These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20038655)
1. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. Fugère V; Krahe R J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655 [TBL] [Abstract][Full Text] [Related]
2. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function. Kolodziejski JA; Sanford SE; Smith GT J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011 [TBL] [Abstract][Full Text] [Related]
4. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus. Hupé GJ; Lewis JE J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893 [TBL] [Abstract][Full Text] [Related]
5. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish. Dunlap KD; DiBenedictis BT; Banever SR J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122 [TBL] [Abstract][Full Text] [Related]
6. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. Kolodziejski JA; Nelson BS; Smith GT J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000 [TBL] [Abstract][Full Text] [Related]
7. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus. Hupé GJ; Lewis JE; Benda J J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046 [TBL] [Abstract][Full Text] [Related]
8. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Smith GT; Combs N Horm Behav; 2008 Jun; 54(1):69-82. PubMed ID: 18336816 [TBL] [Abstract][Full Text] [Related]
9. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Zhou M; Smith GT J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413 [TBL] [Abstract][Full Text] [Related]
10. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. Zupanc GK J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494 [TBL] [Abstract][Full Text] [Related]
11. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. Zakon H; Oestreich J; Tallarovic S; Triefenbach F J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493 [TBL] [Abstract][Full Text] [Related]
12. Energetic constraints on electric signalling in wave-type weakly electric fishes. Reardon EE; Parisi A; Krahe R; Chapman LJ J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756 [TBL] [Abstract][Full Text] [Related]
13. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing. Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855 [TBL] [Abstract][Full Text] [Related]
14. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny. Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924 [TBL] [Abstract][Full Text] [Related]
15. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD. Mills A; Zakon HH; Marchaterre MA; Bass AH J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851 [TBL] [Abstract][Full Text] [Related]
16. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. Salazar VL; Stoddard PK J Exp Biol; 2008 Mar; 211(Pt 6):1012-20. PubMed ID: 18310126 [TBL] [Abstract][Full Text] [Related]
17. Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus. Tallarovic SK; Zakon HH J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):649-57. PubMed ID: 12355241 [TBL] [Abstract][Full Text] [Related]
18. Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus. Harvey-Girard E; Tweedle J; Ironstone J; Cuddy M; Ellis W; Maler L J Comp Neurol; 2010 Jul; 518(14):2666-92. PubMed ID: 20506470 [TBL] [Abstract][Full Text] [Related]
19. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus. Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477 [TBL] [Abstract][Full Text] [Related]
20. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Telgkamp P; Combs N; Smith GT Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]