BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20039193)

  • 1. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice.
    Amir Hossain M; Lee Y; Cho JI; Ahn CH; Lee SK; Jeon JS; Kang H; Lee CH; An G; Park PB
    Plant Mol Biol; 2010 Mar; 72(4-5):557-66. PubMed ID: 20039193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice.
    Zhang C; Liu J; Zhao T; Gomez A; Li C; Yu C; Li H; Lin J; Yang Y; Liu B; Lin C
    Plant Physiol; 2016 May; 171(1):334-43. PubMed ID: 26945049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis identified bZIP transcription factors genes responsive to abiotic stress in Alfalfa (Medicago sativa L.).
    Parajuli A; Borphukan B; Sanguinet KA; Zhang Z
    BMC Genomics; 2024 May; 25(1):497. PubMed ID: 38773372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic helix-loop-helix transcription factor OsbHLH110 positively regulates abscisic acid biosynthesis and salinity tolerance in rice.
    Zhang G; Ren N; Huang L; Shen T; Chen Y; Yang Y; Huang X; Jiang M
    Plant Physiol Biochem; 2024 Feb; 207():108423. PubMed ID: 38373370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A soybean bZIP transcription factor is involved in submergence resistance.
    Lin Y; Huo X; Xu J; Li Y; Zhu H; Yu Y; Tang L; Wang X
    Biochem Biophys Res Commun; 2024 Aug; 722():150151. PubMed ID: 38801801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of bZIP, BBR, and BZR transcription factors in Triticum aestivum.
    Ahad A; Aslam R; Gul A; Amir R; Munir F; Batool TS; Ilyas M; Sarwar M; Nadeem MA; Baloch FS; Fiaz S; Zia MAB
    PLoS One; 2021; 16(11):e0259404. PubMed ID: 34847173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions.
    Ré DA; Dezar CA; Chan RL; Baldwin IT; Bonaventure G
    J Exp Bot; 2011 Jan; 62(1):155-66. PubMed ID: 20713465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling.
    De Vleesschauwer D; Yang Y; Cruz CV; Höfte M
    Plant Physiol; 2010 Apr; 152(4):2036-52. PubMed ID: 20130100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice F-bZIP transcription factors regulate the zinc deficiency response.
    Lilay GH; Castro PH; Guedes JG; Almeida DM; Campilho A; Azevedo H; Aarts MGM; Saibo NJM; Assunção AGL
    J Exp Bot; 2020 Jun; 71(12):3664-3677. PubMed ID: 32133499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interface between metabolic and stress signalling.
    Hey SJ; Byrne E; Halford NG
    Ann Bot; 2010 Feb; 105(2):197-203. PubMed ID: 20007158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of metal homoeostasis by two F-group bZIP transcription factors bZIP48 and bZIP50 in rice.
    Qing T; Xie TC; Zhu QY; Lu HP; Liu JX
    Plant Cell Environ; 2024 May; 47(5):1852-1864. PubMed ID: 38334305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression profiling of ALOG family genes during inflorescence development and abiotic stress responses in rice (
    Liu Z; Fan Z; Wang L; Zhang S; Xu W; Zhao S; Fang S; Liu M; Kofi SM; Zhang S; Kang N; Ai H; Li R; Feng T; Wei S; Zhao H
    Front Genet; 2024; 15():1381690. PubMed ID: 38650857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring abscisic acid release from single rice protoplast by amperometry at microelectrodes modified with abscisic acid receptor PYL2.
    Wu Y; Hu L; Wu L; Yang Y; Li Y
    Bioelectrochemistry; 2024 Oct; 159():108733. PubMed ID: 38761493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice.
    Hossain MA; Cho JI; Han M; Ahn CH; Jeon JS; An G; Park PB
    J Plant Physiol; 2010 Nov; 167(17):1512-20. PubMed ID: 20576316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice.
    Tang N; Zhang H; Li X; Xiao J; Xiong L
    Plant Physiol; 2012 Apr; 158(4):1755-68. PubMed ID: 22301130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABA-mediated transcriptional regulation in response to osmotic stress in plants.
    Fujita Y; Fujita M; Shinozaki K; Yamaguchi-Shinozaki K
    J Plant Res; 2011 Jul; 124(4):509-25. PubMed ID: 21416314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice.
    Liu C; Wu Y; Wang X
    Planta; 2012 Jun; 235(6):1157-69. PubMed ID: 22189955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.).
    Bae H; Kim SK; Cho SK; Kang BG; Kim WT
    Plant Sci; 2011 Jun; 180(6):775-82. PubMed ID: 21497713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice.
    Seo JS; Joo J; Kim MJ; Kim YK; Nahm BH; Song SI; Cheong JJ; Lee JS; Kim JK; Choi YD
    Plant J; 2011 Mar; 65(6):907-21. PubMed ID: 21332845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice.
    Takasaki H; Maruyama K; Kidokoro S; Ito Y; Fujita Y; Shinozaki K; Yamaguchi-Shinozaki K; Nakashima K
    Mol Genet Genomics; 2010 Sep; 284(3):173-83. PubMed ID: 20632034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.