BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20039378)

  • 1. Estimation of genotype relative risks from pedigree data by retrospective likelihoods.
    Schaid DJ; McDonnell SK; Riska SM; Carlson EE; Thibodeau SN
    Genet Epidemiol; 2010 May; 34(4):287-98. PubMed ID: 20039378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candidate-gene association studies with pedigree data: controlling for environmental covariates.
    Slager SL; Schaid DJ; Wang L; Thibodeau SN
    Genet Epidemiol; 2003 May; 24(4):273-83. PubMed ID: 12687644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating penetrance from family data using a retrospective likelihood when ascertainment depends on genotype and age of onset.
    Carayol J; Bonaïti-Pellié C
    Genet Epidemiol; 2004 Sep; 27(2):109-17. PubMed ID: 15305327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating single nucleotide polymorphism associations using pedigree data: applications to breast cancer.
    Barnes DR; Barrowdale D; Beesley J; Chen X; ; ; James PA; Hopper JL; Goldgar D; Chenevix-Trench G; Antoniou AC; Mitchell G
    Br J Cancer; 2013 Jun; 108(12):2610-22. PubMed ID: 23756864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite likelihood method for inferring local pedigrees.
    Ko A; Nielsen R
    PLoS Genet; 2017 Aug; 13(8):e1006963. PubMed ID: 28827797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias and efficiency in family-based gene-characterization studies: conditional, prospective, retrospective, and joint likelihoods.
    Kraft P; Thomas DC
    Am J Hum Genet; 2000 Mar; 66(3):1119-31. PubMed ID: 10712222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and management of single nucleotide polymorphism genotype errors in genetic association analysis.
    Gordon D; Ott J
    Pac Symp Biocomput; 2001; ():18-29. PubMed ID: 11262939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing genetic linkage with relative pairs and covariates by quasi-likelihood score statistics.
    Schaid DJ; Sinnwell JP; Thibodeau SN
    Hum Hered; 2007; 64(4):220-33. PubMed ID: 17565225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variance-components methods for linkage and association analysis of ordinal traits in general pedigrees.
    Diao G; Lin DY
    Genet Epidemiol; 2010 Apr; 34(3):232-7. PubMed ID: 19918762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage analysis in the presence of errors IV: joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified.
    Göring HH; Terwilliger JD
    Am J Hum Genet; 2000 Apr; 66(4):1310-27. PubMed ID: 10731466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic association analysis with pedigrees: Direct inference using the composite likelihood ratio.
    Baskurt Z; Strug LJ
    Genet Epidemiol; 2018 Dec; 42(8):826-837. PubMed ID: 30221395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family-based likelihood ratio test for general pedigree structures that allows for genotyping error and missing data.
    Yang Y; Wise CA; Gordon D; Finch SJ
    Hum Hered; 2008; 66(2):99-110. PubMed ID: 18382089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherent intractability of the ascertainment problem for pedigree data: a general likelihood framework.
    Vieland VJ; Hodge SE
    Am J Hum Genet; 1995 Jan; 56(1):33-43. PubMed ID: 7825595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple-to-use method incorporating genomic markers into prostate cancer risk prediction tools facilitated future validation.
    Grill S; Fallah M; Leach RJ; Thompson IM; Hemminki K; Ankerst DP
    J Clin Epidemiol; 2015 May; 68(5):563-73. PubMed ID: 25684153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving pedigree-based linkage analysis by estimating coancestry among families.
    Glazner C; Thompson EA
    Stat Appl Genet Mol Biol; 2012 Jan; 11(2):. PubMed ID: 22499699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage.
    Stanford JL; FitzGerald LM; McDonnell SK; Carlson EE; McIntosh LM; Deutsch K; Hood L; Ostrander EA; Schaid DJ
    Hum Mol Genet; 2009 May; 18(10):1839-48. PubMed ID: 19251732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of genotype error rate using samples with pedigree information--an application on the GeneChip Mapping 10K array.
    Hao K; Li C; Rosenow C; Hung Wong W
    Genomics; 2004 Oct; 84(4):623-30. PubMed ID: 15475239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regression models for linkage heterogeneity applied to familial prostate cancer.
    Schaid DJ; McDonnell SK; Thibodeau SN
    Am J Hum Genet; 2001 May; 68(5):1189-96. PubMed ID: 11309684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of intergenerational genetic effects with application to HLA-B matching as a risk factor for schizophrenia.
    Childs EJ; Sobel EM; Palmer CG; Sinsheimer JS
    Hum Hered; 2011; 72(3):161-72. PubMed ID: 22004985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascertainment-adjusted maximum likelihood estimation for the additive genetic gamma frailty model.
    Sun W; Li H
    Lifetime Data Anal; 2004 Sep; 10(3):229-45. PubMed ID: 15456105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.