These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20039603)
21. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell. Campbell AS; Murata H; Carmali S; Matyjaszewski K; Islam MF; Russell AJ Biosens Bioelectron; 2016 Dec; 86():446-453. PubMed ID: 27424262 [TBL] [Abstract][Full Text] [Related]
22. Polymer modified electrodes for the reversible oxidation-reduction of NAD+/NADH for use within amperometric biosensors. Warrington RJ; Higson SP Biomed Sci Instrum; 2001; 37():75-80. PubMed ID: 11347449 [TBL] [Abstract][Full Text] [Related]
23. Effect of surfactant type and redox polymer type on single-walled carbon nanotube modified electrodes. Chen J; Tran TO; Ray MT; Brunski DB; Keay JC; Hickey D; Johnson MB; Glatzhofer DT; Schmidtke DW Langmuir; 2013 Aug; 29(33):10586-95. PubMed ID: 23859497 [TBL] [Abstract][Full Text] [Related]
24. Electronic transduction in model enzyme sensors assisted by a photoisomerizable azo-polymer. Voinova MV; Jonson M Biosens Bioelectron; 2004 Dec; 20(6):1106-10. PubMed ID: 15556355 [TBL] [Abstract][Full Text] [Related]
25. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers. Alonso B; Armada PG; Losada J; Cuadrado I; González B; Casado CM Biosens Bioelectron; 2004 Jul; 19(12):1617-25. PubMed ID: 15142595 [TBL] [Abstract][Full Text] [Related]
26. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. Tan Y; Deng W; Li Y; Huang Z; Meng Y; Xie Q; Ma M; Yao S J Phys Chem B; 2010 Apr; 114(15):5016-24. PubMed ID: 20337455 [TBL] [Abstract][Full Text] [Related]
27. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. Scodeller P; Carballo R; Szamocki R; Levin L; Forchiassin F; Calvo EJ J Am Chem Soc; 2010 Aug; 132(32):11132-40. PubMed ID: 20698679 [TBL] [Abstract][Full Text] [Related]
28. Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via Aquifex aeolicus hydrogenase at graphite membrane electrodes. Ciaccafava A; Infossi P; Giudici-Orticoni MT; Lojou E Langmuir; 2010 Dec; 26(23):18534-41. PubMed ID: 21043442 [TBL] [Abstract][Full Text] [Related]
29. Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Kuwahara T; Ohta H; Kondo M; Shimomura M Bioelectrochemistry; 2008 Nov; 74(1):66-72. PubMed ID: 18718818 [TBL] [Abstract][Full Text] [Related]
30. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522 [TBL] [Abstract][Full Text] [Related]
31. Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells. Zafar MN; Tasca F; Gorton L; Patridge EV; Ferry JG; Nöll G Anal Chem; 2009 May; 81(10):4082-8. PubMed ID: 19438267 [TBL] [Abstract][Full Text] [Related]
32. Crosslinked redox polymer enzyme electrodes containing carbon nanotubes for high and stable glucose oxidation current. MacAodha D; Ferrer ML; Conghaile PÓ; Kavanagh P; Leech D Phys Chem Chem Phys; 2012 Nov; 14(42):14667-72. PubMed ID: 23033161 [TBL] [Abstract][Full Text] [Related]
33. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications. Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452 [TBL] [Abstract][Full Text] [Related]
34. Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers. Pinyou P; Ruff A; Pöller S; Alsaoub S; Leimkühler S; Wollenberger U; Schuhmann W Bioelectrochemistry; 2016 Jun; 109():24-30. PubMed ID: 26775204 [TBL] [Abstract][Full Text] [Related]
35. Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation. Ó Conghaile P; Pöller S; MacAodha D; Schuhmann W; Leech D Biosens Bioelectron; 2013 May; 43():30-7. PubMed ID: 23274194 [TBL] [Abstract][Full Text] [Related]
36. Strong interaction between imidazolium-based polycationic polymer and ferricyanide: toward redox potential regulation for selective in vivo electrochemical measurements. Zhuang X; Wang D; Lin Y; Yang L; Yu P; Jiang W; Mao L Anal Chem; 2012 Feb; 84(4):1900-6. PubMed ID: 22263742 [TBL] [Abstract][Full Text] [Related]
37. Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing boolean logic operations: approaching "smart" physiologically controlled biointerfaces. Zhou J; Tam TK; Pita M; Ornatska M; Minko S; Katz E ACS Appl Mater Interfaces; 2009 Jan; 1(1):144-9. PubMed ID: 20355766 [TBL] [Abstract][Full Text] [Related]
38. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing. Raj CR; Chakraborty S Biosens Bioelectron; 2006 Dec; 22(5):700-6. PubMed ID: 16584882 [TBL] [Abstract][Full Text] [Related]
39. Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures. Curulli A; Valentini F; Orlanduci S; Terranova ML; Palleschi G Biosens Bioelectron; 2004 Dec; 20(6):1223-32. PubMed ID: 15556371 [TBL] [Abstract][Full Text] [Related]
40. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Li Y; Wang P; Wang L; Lin X Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]