BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 20039671)

  • 1. Control over catenation in metal-organic frameworks via rational design of the organic building block.
    Farha OK; Malliakas CD; Kanatzidis MG; Hupp JT
    J Am Chem Soc; 2010 Jan; 132(3):950-2. PubMed ID: 20039671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks.
    Ma L; Lin W
    J Am Chem Soc; 2008 Oct; 130(42):13834-5. PubMed ID: 18823117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-peptide frameworks (MPFs): "bioinspired" metal organic frameworks.
    Mantion A; Massüger L; Rabu P; Palivan C; McCusker LB; Taubert A
    J Am Chem Soc; 2008 Feb; 130(8):2517-26. PubMed ID: 18247607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks.
    Nouar F; Eubank JF; Bousquet T; Wojtas L; Zaworotko MJ; Eddaoudi M
    J Am Chem Soc; 2008 Feb; 130(6):1833-5. PubMed ID: 18205363
    [No Abstract]   [Full Text] [Related]  

  • 6. Rational designs for highly proton-conductive metal-organic frameworks.
    Sadakiyo M; Yamada T; Kitagawa H
    J Am Chem Soc; 2009 Jul; 131(29):9906-7. PubMed ID: 19621952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic synthesis of chiral 4,4'-bipyridyls and their metal-organic frameworks.
    Sbircea L; Sharma ND; Clegg W; Harrington RW; Horton PN; Hursthouse MB; Apperley DC; Boyd DR; James SL
    Chem Commun (Camb); 2008 Nov; (43):5538-40. PubMed ID: 18997944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailor-made metal-organic frameworks from functionalized molecular building blocks and length-adjustable organic linkers by stepwise synthesis.
    Lan YQ; Li SL; Jiang HL; Xu Q
    Chemistry; 2012 Jun; 18(26):8076-83. PubMed ID: 22618965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.
    Wu CD; Hu A; Zhang L; Lin W
    J Am Chem Soc; 2005 Jun; 127(25):8940-1. PubMed ID: 15969557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quest for zeolite-like metal-organic frameworks: on pyrimidinecarboxylate bis-chelating bridging ligands.
    Sava DF; Kravtsov VCh; Nouar F; Wojtas L; Eubank JF; Eddaoudi M
    J Am Chem Soc; 2008 Mar; 130(12):3768-70. PubMed ID: 18307350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals.
    Furukawa H; Go YB; Ko N; Park YK; Uribe-Romo FJ; Kim J; O'Keeffe M; Yaghi OM
    Inorg Chem; 2011 Sep; 50(18):9147-52. PubMed ID: 21842896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional metal-organic frameworks based on tetrahedral and square-planar building blocks: hydrogen sorption and dye uptake studies.
    Liu D; Xie Z; Ma L; Lin W
    Inorg Chem; 2010 Oct; 49(20):9107-9. PubMed ID: 20860363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-controlled luminescence quenching in metal-organic frameworks.
    Wang C; Lin W
    J Am Chem Soc; 2011 Mar; 133(12):4232-5. PubMed ID: 21384886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks.
    Zhao YL; Liu L; Zhang W; Sue CH; Li Q; Miljanić OS; Yaghi OM; Stoddart JF
    Chemistry; 2009 Dec; 15(48):13356-80. PubMed ID: 19946906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and construction of a 2D metal organic framework with multiple cavities: a nonregular net with a paracyclophane that codes for multiply fused nodes.
    Papaefstathiou GS; Friscić T; MacGillivray LR
    J Am Chem Soc; 2005 Oct; 127(41):14160-1. PubMed ID: 16218591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks.
    Morris W; Volosskiy B; Demir S; Gándara F; McGrier PL; Furukawa H; Cascio D; Stoddart JF; Yaghi OM
    Inorg Chem; 2012 Jun; 51(12):6443-5. PubMed ID: 22676251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks.
    Hawxwell SM; Espallargas GM; Bradshaw D; Rosseinsky MJ; Prior TJ; Florence AJ; van de Streek J; Brammer L
    Chem Commun (Camb); 2007 Apr; (15):1532-4. PubMed ID: 17406698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolabile protecting groups in metal-organic frameworks: preventing interpenetration and masking functional groups.
    Deshpande RK; Waterhouse GI; Jameson GB; Telfer SG
    Chem Commun (Camb); 2012 Feb; 48(10):1574-6. PubMed ID: 21779545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.
    Perry JJ; Perman JA; Zaworotko MJ
    Chem Soc Rev; 2009 May; 38(5):1400-17. PubMed ID: 19384444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.