BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20039733)

  • 1. Redox behavior of magnetite: implications for contaminant reduction.
    Gorski CA; Nurmi JT; Tratnyek PG; Hofstetter TB; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):55-60. PubMed ID: 20039733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction.
    Gorski CA; Scherer MM
    Environ Sci Technol; 2009 May; 43(10):3675-80. PubMed ID: 19544872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.
    Pang SC; Chin SF; Anderson MA
    J Colloid Interface Sci; 2007 Jul; 311(1):94-101. PubMed ID: 17395194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of magnetite stoichiometry on U(VI) reduction.
    Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM
    Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite.
    Pasakarnis TS; Boyanov MI; Kemner KM; Mishra B; O'Loughlin EJ; Parkin G; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6987-94. PubMed ID: 23621619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.
    Lin FH; Doong RA
    J Colloid Interface Sci; 2014 Mar; 417():325-32. PubMed ID: 24407694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Potentials of Magnetite Suspensions under Reducing Conditions.
    Robinson TC; Latta DE; Leddy J; Scherer MM
    Environ Sci Technol; 2022 Dec; 56(23):17454-17461. PubMed ID: 36394877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles.
    Byrne JM; van der Laan G; Figueroa AI; Qafoku O; Wang C; Pearce CI; Jackson M; Feinberg J; Rosso KM; Kappler A
    Sci Rep; 2016 Aug; 6():30969. PubMed ID: 27492680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe atom exchange between aqueous Fe2+ and magnetite.
    Gorski CA; Handler RM; Beard BL; Pasakarnis T; Johnson CM; Scherer MM
    Environ Sci Technol; 2012 Nov; 46(22):12399-407. PubMed ID: 22577839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using nitrogen isotope fractionation to assess the oxidation of substituted anilines by manganese oxide.
    Skarpeli-Liati M; Jiskra M; Turgeon A; Garr AN; Arnold WA; Cramer CJ; Schwarzenbach RP; Hofstetter TB
    Environ Sci Technol; 2011 Jul; 45(13):5596-604. PubMed ID: 21627095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Stoichiometry on Nanomagnetite Sulfidation.
    Nie M; Li X; Ding Y; Pan Y; Cai Y; Liu Y; Liu J
    Environ Sci Technol; 2023 Feb; 57(7):3002-3011. PubMed ID: 36745694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass transport effects on the kinetics of nitrobenzene reduction by iron metal.
    Scherer MM; Johnson KM; Westall JC; Tratnyek PG
    Environ Sci Technol; 2001 Jul; 35(13):2804-11. PubMed ID: 11452613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. U(VI) sorption and reduction kinetics on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3821-30. PubMed ID: 22394451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EXAFS and HRTEM evidence for As(III)-containing surface precipitates on nanocrystalline magnetite: implications for As sequestration.
    Morin G; Wang Y; Ona-Nguema G; Juillot F; Calas G; Menguy N; Aubry E; Bargar JR; Brown GE
    Langmuir; 2009 Aug; 25(16):9119-28. PubMed ID: 19601563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems.
    Huang YH; Zhang TC
    Water Res; 2006 Sep; 40(16):3075-3082. PubMed ID: 16901528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions.
    Costa RC; Lelis MF; Oliveira LC; Fabris JD; Ardisson JD; Rios RR; Silva CN; Lago RM
    J Hazard Mater; 2006 Feb; 129(1-3):171-8. PubMed ID: 16298475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic sorption onto natural hematite, magnetite, and goethite.
    Giménez J; Martínez M; de Pablo J; Rovira M; Duro L
    J Hazard Mater; 2007 Mar; 141(3):575-80. PubMed ID: 16978766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.
    Nieto-Juarez JI; Kohn T
    Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.