These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 20039736)

  • 1. Spatial patterns and modeling of reductive ferrihydrite transformation observed in artificial soil aggregates.
    Pallud C; Kausch M; Fendorf S; Meile C
    Environ Sci Technol; 2010 Jan; 44(1):74-9. PubMed ID: 20039736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport implications resulting from internal redistribution of arsenic and iron within constructed soil aggregates.
    Masue-Slowey Y; Kocar BD; Jofré SA; Mayer KU; Fendorf S
    Environ Sci Technol; 2011 Jan; 45(2):582-8. PubMed ID: 21158450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions.
    Yang L; Steefel CI; Marcus MA; Bargar JR
    Environ Sci Technol; 2010 Jul; 44(14):5469-75. PubMed ID: 20553044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact with soil impacts ferrihydrite and lepidocrocite transformations during redox cycling in a paddy soil.
    Schulz K; Notini L; Grigg ARC; Kubeneck LJ; Wisawapipat W; ThomasArrigo LK; Kretzschmar R
    Environ Sci Process Impacts; 2023 Dec; 25(12):1945-1961. PubMed ID: 37971060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions.
    Grigg ARC; ThomasArrigo LK; Schulz K; Rothwell KA; Kaegi R; Kretzschmar R
    Environ Sci Process Impacts; 2022 Oct; 24(10):1867-1882. PubMed ID: 36131682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of arsenic fate and transport on biogeochemical heterogeneity arising from the physical structure of soils and sediments.
    Masue-Slowey Y; Ying SC; Kocar BD; Pallud CE; Fendorf S
    J Environ Qual; 2013 Jul; 42(4):1119-29. PubMed ID: 24216363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution.
    Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions.
    Benner SG; Hansel CM; Wielinga BW; Barber TM; Fendorf S
    Environ Sci Technol; 2002 Apr; 36(8):1705-11. PubMed ID: 11993867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
    Chen C; Kukkadapu R; Sparks DL
    Environ Sci Technol; 2015 Sep; 49(18):10927-36. PubMed ID: 26260047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.
    Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C
    J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of two aromatic acids onto iron oxides: experimental study and modeling.
    Hanna K
    J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of iron oxides addition on organic acids content in paddy soil].
    Qu D; Sylvia S; Rolfconrad
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1425-8. PubMed ID: 12624999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil.
    Wang XJ; Chen XP; Kappler A; Sun GX; Zhu YG
    Environ Toxicol Chem; 2009 Nov; 28(11):2255-62. PubMed ID: 19572768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of 1-hydroxy-2-naphthoic acid to goethite, lepidocrocite and ferrihydrite: batch experiments and infrared study.
    Hanna K; Carteret C
    Chemosphere; 2007 Dec; 70(2):178-86. PubMed ID: 17689586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments.
    Shao H; Butler EC
    Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.