BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 20039736)

  • 21. Assessment of sulfur and iron speciation in a soil aggregate by combined S and Fe micro-XANES: microspatial patterns and relationships.
    Prietzel J; Thieme J; Salomé M
    J Synchrotron Radiat; 2010 Mar; 17(2):166-72. PubMed ID: 20157267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.
    Fan JX; Wang YJ; Liu C; Wang LH; Yang K; Zhou DM; Li W; Sparks DL
    J Hazard Mater; 2014 Aug; 279():212-9. PubMed ID: 25064258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferrihydrite Formation: The Role of Fe13 Keggin Clusters.
    Weatherill JS; Morris K; Bots P; Stawski TM; Janssen A; Abrahamsen L; Blackham R; Shaw S
    Environ Sci Technol; 2016 Sep; 50(17):9333-42. PubMed ID: 27480123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate.
    Kim EJ; Baek K
    J Hazard Mater; 2015 Mar; 284():19-26. PubMed ID: 25463213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    J Environ Qual; 2006; 35(6):2075-83. PubMed ID: 17071876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Microbial reduction ability of various iron oxides in pure culture experiment].
    Qu D; Schnell S
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions.
    McCormick ML; Bouwer EJ; Adriaens P
    Environ Sci Technol; 2002 Feb; 36(3):403-10. PubMed ID: 11871555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-situ magnetic susceptibility measurements as a tool to follow geomicrobiological transformation of Fe minerals.
    Porsch K; Dippon U; Rijal ML; Appel E; Kappler A
    Environ Sci Technol; 2010 May; 44(10):3846-52. PubMed ID: 20426439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand.
    Kaal J; Nierop KG; Verstraten JM
    J Colloid Interface Sci; 2005 Jul; 287(1):72-9. PubMed ID: 15914150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.
    Saalfield SL; Bostick BC
    Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions.
    Mohatt JL; Hu L; Finneran KT; Strathmann TJ
    Environ Sci Technol; 2011 Jun; 45(11):4793-801. PubMed ID: 21542626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abiotic reductive dechlorination of chlorinated ethylenes by soil.
    Lee W; Batchelor B
    Chemosphere; 2004 May; 55(5):705-13. PubMed ID: 15013675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.
    Zegeye A; Mustin C; Jorand F
    Geobiology; 2010 Jun; 8(3):209-22. PubMed ID: 20398066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of different types of oxalate surface complexes in dissolution process of ferrihydrite aggregates.
    Li F; Koopal L; Tan W
    Sci Rep; 2018 Feb; 8(1):2060. PubMed ID: 29391450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology.
    Braunschweig J; Bosch J; Heister K; Kuebeck C; Meckenstock RU
    J Microbiol Methods; 2012 Apr; 89(1):41-8. PubMed ID: 22349079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents.
    Kim EJ; Lee JC; Baek K
    J Hazard Mater; 2015; 283():454-61. PubMed ID: 25464283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.