BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20040153)

  • 1. Effect of cyclic loading on in vitro degradation of poly(L-lactide-co-glycolide) scaffolds.
    Yang Y; Tang G; Zhao Y; Yuan X; Fan Y
    J Biomater Sci Polym Ed; 2010; 21(1):53-66. PubMed ID: 20040153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.
    Wu L; Ding J
    Biomaterials; 2004 Dec; 25(27):5821-30. PubMed ID: 15172494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.
    Wu L; Ding J
    J Biomed Mater Res A; 2005 Dec; 75(4):767-77. PubMed ID: 16121386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold.
    Li P; Feng X; Jia X; Fan Y
    Acta Biomater; 2010 Aug; 6(8):2991-6. PubMed ID: 20170760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds.
    Wu L; Zhang J; Jing D; Ding J
    J Biomed Mater Res A; 2006 Feb; 76(2):264-71. PubMed ID: 16265648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E
    Acta Biomater; 2009 Jan; 5(1):305-15. PubMed ID: 18778977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [In vitro degradation and subsequent biomechanical changes of poly(lactide-co-glycolide) scaffolds prepared by mild heating under high pressure].
    Yu B; Gao CJ; Quan DP; Lu ZJ
    Di Yi Jun Yi Da Xue Xue Bao; 2003 May; 23(5):416-20. PubMed ID: 12754116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro hydrolytic and enzymatic degradation of nestlike-patterned electrospun poly(D,L-lactide-co-glycolide) scaffolds.
    Zhou X; Cai Q; Yan N; Deng X; Yang X
    J Biomed Mater Res A; 2010 Dec; 95(3):755-65. PubMed ID: 20725988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.
    Ge Z; Tian X; Heng BC; Fan V; Yeo JF; Cao T
    Biomed Mater; 2009 Apr; 4(2):021001. PubMed ID: 19208943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation behaviour in vitro for poly(D,L-lactide-co-glycolide) as drug carrier.
    Lee JS; Chae GS; Kim MS; Cho SH; Lee HB; Khang G
    Biomed Mater Eng; 2004; 14(2):185-92. PubMed ID: 15156109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.