These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20040384)

  • 1. Ionic substitutions in calcium phosphates synthesized at low temperature.
    Boanini E; Gazzano M; Bigi A
    Acta Biomater; 2010 Jun; 6(6):1882-94. PubMed ID: 20040384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Substitutions in Non-Apatitic Calcium Phosphates.
    Laskus A; Kolmas J
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-Tricalcium phosphate: synthesis, properties and biomedical applications.
    Carrodeguas RG; De Aza S
    Acta Biomater; 2011 Oct; 7(10):3536-46. PubMed ID: 21712105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials.
    Combes C; Rey C
    Acta Biomater; 2010 Sep; 6(9):3362-78. PubMed ID: 20167295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield.
    Lynn AK; Bonfield W
    Acc Chem Res; 2005 Mar; 38(3):202-7. PubMed ID: 15766239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-substituted calcium phosphates - a critical view.
    Bohner M
    Biomaterials; 2009 Nov; 30(32):6403-6. PubMed ID: 19695699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation.
    LeGeros RZ; Bleiwas CB; Retino M; Rohanizadeh R; LeGeros JP
    Am J Dent; 1999 Apr; 12(2):65-71. PubMed ID: 10477985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium modified biocements with zero order release kinetics.
    Hamdan Alkhraisat M; Moseke C; Blanco L; Barralet JE; Lopez-Carbacos E; Gbureck U
    Biomaterials; 2008 Dec; 29(35):4691-7. PubMed ID: 18804862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of proteins on the synthesis and assembly of calcium phosphate nanomaterials.
    Cai Y; Yao J
    Nanoscale; 2010 Oct; 2(10):1842-8. PubMed ID: 20676452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of room-temperature synthesized nano-sized beta-tricalcium phosphate.
    Bow JS; Liou SC; Chen SY
    Biomaterials; 2004 Jul; 25(16):3155-61. PubMed ID: 14980410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility.
    Bastakoti BP; Inuoe M; Yusa S; Liao SH; Wu KC; Nakashima K; Yamauchi Y
    Chem Commun (Camb); 2012 Jul; 48(52):6532-4. PubMed ID: 22622697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous calcium (ortho)phosphates.
    Dorozhkin SV
    Acta Biomater; 2010 Dec; 6(12):4457-75. PubMed ID: 20609395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of anionic monomer content on the biodegradation and toxicity of polyvinyl-urethane carbonate-ceramic interpenetrating phase composites.
    Yang L; Hong J; Wang J; Pilliar RM; Santerre JP
    Biomaterials; 2005 Oct; 26(30):5951-9. PubMed ID: 15958241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin film of low-crystalline calcium phosphate apatite formed at low temperature.
    Kim HM; Kim Y; Park SJ; Rey C; Lee HM; Glimcher MJ; Ko JS
    Biomaterials; 2000 Jun; 21(11):1129-34. PubMed ID: 10817265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.
    Seregin VV; Coffer JL
    J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium substitution in bioactive calcium phosphates: a first-principles study.
    Matsunaga K; Murata H
    J Phys Chem B; 2009 Mar; 113(11):3584-9. PubMed ID: 19243110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications.
    Miranda P; Saiz E; Gryn K; Tomsia AP
    Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.