These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20040385)
1. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Altomare L; Gadegaard N; Visai L; Tanzi MC; Farè S Acta Biomater; 2010 Jun; 6(6):1948-57. PubMed ID: 20040385 [TBL] [Abstract][Full Text] [Related]
2. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Wang PY; Yu HT; Tsai WB Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416 [TBL] [Abstract][Full Text] [Related]
3. Oriented Schwann cell growth on microgrooved surfaces. Hsu SH; Chen CY; Lu PS; Lai CS; Chen CJ Biotechnol Bioeng; 2005 Dec; 92(5):579-88. PubMed ID: 16261633 [TBL] [Abstract][Full Text] [Related]
4. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Altomare L; Riehle M; Gadegaard N; Tanzi MC; Farè S Int J Artif Organs; 2010 Aug; 33(8):535-43. PubMed ID: 20872348 [TBL] [Abstract][Full Text] [Related]
5. Hot embossing for micropatterned cell substrates. Charest JL; Bryant LE; Garcia AJ; King WP Biomaterials; 2004 Aug; 25(19):4767-75. PubMed ID: 15120523 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
7. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. Riboldi SA; Sadr N; Pigini L; Neuenschwander P; Simonet M; Mognol P; Sampaolesi M; Cossu G; Mantero S J Biomed Mater Res A; 2008 Mar; 84(4):1094-101. PubMed ID: 17685407 [TBL] [Abstract][Full Text] [Related]
8. Bone tissue engineering on patterned collagen films: an in vitro study. Ber S; Torun Köse G; Hasirci V Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
10. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media. Palamà IE; D'Amone S; Coluccia AM; Gigli G Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558 [TBL] [Abstract][Full Text] [Related]
12. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974 [TBL] [Abstract][Full Text] [Related]
13. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Shah R; Sinanan AC; Knowles JC; Hunt NP; Lewis MP Biomaterials; 2005 May; 26(13):1497-505. PubMed ID: 15522751 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone). Wu L; Wang L; Wang X; Xu K Acta Biomater; 2010 Mar; 6(3):1079-89. PubMed ID: 19671452 [TBL] [Abstract][Full Text] [Related]
16. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior. Wang K; Cai L; Zhang L; Dong J; Wang S Adv Healthc Mater; 2012 May; 1(3):292-301. PubMed ID: 23184743 [TBL] [Abstract][Full Text] [Related]
18. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395 [TBL] [Abstract][Full Text] [Related]
19. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds. Glawe JD; Hill JB; Mills DK; McShane MJ J Biomed Mater Res A; 2005 Oct; 75(1):106-14. PubMed ID: 16052500 [TBL] [Abstract][Full Text] [Related]
20. Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Molnar P; Wang W; Natarajan A; Rumsey JW; Hickman JJ Biotechnol Prog; 2007; 23(1):265-8. PubMed ID: 17269697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]