These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20041206)

  • 21. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors.
    Ogawa A; Maeda M
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3156-60. PubMed ID: 17391960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational design of allosteric ribozymes as molecular biosensors.
    Penchovsky R
    Biotechnol Adv; 2014; 32(5):1015-27. PubMed ID: 24877999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach.
    Rehm C; Klauser B; Hartig JS
    Methods Mol Biol; 2015; 1316():127-40. PubMed ID: 25967058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribozyme-mediated signal augmentation on a mass-sensitive biosensor.
    Knudsen SM; Lee J; Ellington AD; Savran CA
    J Am Chem Soc; 2006 Dec; 128(50):15936-7. PubMed ID: 17165697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic mammalian riboswitches based on guanine aptazyme.
    Nomura Y; Kumar D; Yokobayashi Y
    Chem Commun (Camb); 2012 Jul; 48(57):7215-7. PubMed ID: 22692003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational design of allosteric ribozymes.
    Tang J; Breaker RR
    Chem Biol; 1997 Jun; 4(6):453-9. PubMed ID: 9224568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells.
    Zhong G; Wang H; Bailey CC; Gao G; Farzan M
    Elife; 2016 Nov; 5():. PubMed ID: 27805569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening of Genetic Switches Based on the Twister Ribozyme Motif.
    Felletti M; Klauser B; Hartig JS
    Methods Mol Biol; 2016; 1380():225-39. PubMed ID: 26552830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing Criteria Affecting the Functionality of G-Quadruplex-Based DNA Aptazymes as Colorimetric Biosensors and Development of Quinine-Binding Aptazymes.
    Ahmadi Y; Soldo R; Rathammer K; Eibler L; Barišić I
    Anal Chem; 2021 Mar; 93(12):5161-5169. PubMed ID: 33724777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes.
    Micura R; Höbartner C
    Chem Soc Rev; 2020 Oct; 49(20):7331-7353. PubMed ID: 32944725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme.
    Tang J; Breaker RR
    Nucleic Acids Res; 1998 Sep; 26(18):4214-21. PubMed ID: 9722642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing.
    Yokobayashi Y
    Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous detection of diverse analytes with an aptazyme ligase array.
    Hesselberth JR; Robertson MP; Knudsen SM; Ellington AD
    Anal Biochem; 2003 Jan; 312(2):106-12. PubMed ID: 12531194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a new-type riboswitch using an aptazyme and an anti-RBS sequence.
    Ogawa A; Maeda M
    Nucleic Acids Symp Ser (Oxf); 2007; (51):389-90. PubMed ID: 18029750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers.
    Miao Z; Adamiak RW; Antczak M; Boniecki MJ; Bujnicki J; Chen SJ; Cheng CY; Cheng Y; Chou FC; Das R; Dokholyan NV; Ding F; Geniesse C; Jiang Y; Joshi A; Krokhotin A; Magnus M; Mailhot O; Major F; Mann TH; Piątkowski P; Pluta R; Popenda M; Sarzynska J; Sun L; Szachniuk M; Tian S; Wang J; Wang J; Watkins AM; Wiedemann J; Xiao Y; Xu X; Yesselman JD; Zhang D; Zhang Y; Zhang Z; Zhao C; Zhao P; Zhou Y; Zok T; Żyła A; Ren A; Batey RT; Golden BL; Huang L; Lilley DM; Liu Y; Patel DJ; Westhof E
    RNA; 2020 Aug; 26(8):982-995. PubMed ID: 32371455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization.
    Soukup GA; Breaker RR
    Structure; 1999 Jul; 7(7):783-91. PubMed ID: 10425680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.
    Soukup GA; DeRose EC; Koizumi M; Breaker RR
    RNA; 2001 Apr; 7(4):524-36. PubMed ID: 11345431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring protein modification with allosteric ribozymes.
    Vaish NK; Kossen K; Andrews LE; Pasko C; Seiwert SD
    Methods; 2004 Apr; 32(4):428-36. PubMed ID: 15003605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.