These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20042235)
1. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs. McLaughlin CR; Acosta MC; Luna C; Liu W; Belmonte C; Griffith M; Gallar J Biomaterials; 2010 Apr; 31(10):2770-8. PubMed ID: 20042235 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of corneal cells and nerves in an implanted collagen corneal substitute. McLaughlin CR; Fagerholm P; Muzakare L; Lagali N; Forrester JV; Kuffova L; Rafat MA; Liu Y; Shinozaki N; Vascotto SG; Munger R; Griffith M Cornea; 2008 Jun; 27(5):580-9. PubMed ID: 18520509 [TBL] [Abstract][Full Text] [Related]
3. A simple, cross-linked collagen tissue substitute for corneal implantation. Liu Y; Gan L; Carlsson DJ; Fagerholm P; Lagali N; Watsky MA; Munger R; Hodge WG; Priest D; Griffith M Invest Ophthalmol Vis Sci; 2006 May; 47(5):1869-75. PubMed ID: 16638993 [TBL] [Abstract][Full Text] [Related]
4. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Merrett K; Fagerholm P; McLaughlin CR; Dravida S; Lagali N; Shinozaki N; Watsky MA; Munger R; Kato Y; Li F; Marmo CJ; Griffith M Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3887-94. PubMed ID: 18515574 [TBL] [Abstract][Full Text] [Related]
5. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Liu W; Deng C; McLaughlin CR; Fagerholm P; Lagali NS; Heyne B; Scaiano JC; Watsky MA; Kato Y; Munger R; Shinozaki N; Li F; Griffith M Biomaterials; 2009 Mar; 30(8):1551-9. PubMed ID: 19097643 [TBL] [Abstract][Full Text] [Related]
6. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Hackett JM; Lagali N; Merrett K; Edelhauser H; Sun Y; Gan L; Griffith M; Fagerholm P Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):651-7. PubMed ID: 20847116 [TBL] [Abstract][Full Text] [Related]
7. Innervation of tissue-engineered corneal implants in a porcine model: a 1-year in vivo confocal microscopy study. Lagali NS; Griffith M; Shinozaki N; Fagerholm P; Munger R Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3537-44. PubMed ID: 17652721 [TBL] [Abstract][Full Text] [Related]
8. Recombinant human collagen for tissue engineered corneal substitutes. Liu W; Merrett K; Griffith M; Fagerholm P; Dravida S; Heyne B; Scaiano JC; Watsky MA; Shinozaki N; Lagali N; Munger R; Li F Biomaterials; 2008 Mar; 29(9):1147-58. PubMed ID: 18076983 [TBL] [Abstract][Full Text] [Related]
9. Innervation of tissue-engineered recombinant human collagen-based corneal substitutes: a comparative in vivo confocal microscopy study. Lagali N; Griffith M; Fagerholm P; Merrett K; Huynh M; Munger R Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3895-902. PubMed ID: 18408185 [TBL] [Abstract][Full Text] [Related]
10. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Li F; Carlsson D; Lohmann C; Suuronen E; Vascotto S; Kobuch K; Sheardown H; Munger R; Nakamura M; Griffith M Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15346-51. PubMed ID: 14660789 [TBL] [Abstract][Full Text] [Related]
11. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928 [TBL] [Abstract][Full Text] [Related]
12. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique. Koulikovska M; Rafat M; Petrovski G; Veréb Z; Akhtar S; Fagerholm P; Lagali N Tissue Eng Part A; 2015 Mar; 21(5-6):1116-30. PubMed ID: 25412075 [TBL] [Abstract][Full Text] [Related]
14. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Ahn JI; Kuffova L; Merrett K; Mitra D; Forrester JV; Li F; Griffith M Acta Biomater; 2013 Aug; 9(8):7796-805. PubMed ID: 23619290 [TBL] [Abstract][Full Text] [Related]
15. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Rafat M; Xeroudaki M; Koulikovska M; Sherrell P; Groth F; Fagerholm P; Lagali N Biomaterials; 2016 Mar; 83():142-55. PubMed ID: 26773670 [TBL] [Abstract][Full Text] [Related]
16. Corneal reinnervation following penetrating keratoplasty--correlation of esthesiometry and confocal microscopy. Richter A; Slowik C; Somodi S; Vick HP; Guthoff R Ger J Ophthalmol; 1996 Nov; 5(6):513-7. PubMed ID: 9479548 [TBL] [Abstract][Full Text] [Related]
17. Nerve regeneration in cornea after penetrating keratoplasty in rabbit, with special reference to relationship between regenerating nerves and basal laminae. Cho H; Ide C; Tazawa Y Jpn J Ophthalmol; 1988; 32(3):255-63. PubMed ID: 3068388 [TBL] [Abstract][Full Text] [Related]
18. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope. Kauffmann T; Bodanowitz S; Hesse L; Kroll P Ger J Ophthalmol; 1996 Nov; 5(6):508-12. PubMed ID: 9479547 [TBL] [Abstract][Full Text] [Related]
19. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Duan X; Sheardown H Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624 [TBL] [Abstract][Full Text] [Related]
20. Impulse activity in corneal sensory nerve fibers after photorefractive keratectomy. Gallar J; Acosta MC; Gutiérrez AR; Belmonte C Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4033-7. PubMed ID: 17724184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]