These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20042280)

  • 1. Electro-coagulation-flotation process for algae removal.
    Gao S; Yang J; Tian J; Ma F; Tu G; Du M
    J Hazard Mater; 2010 May; 177(1-3):336-43. PubMed ID: 20042280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of arsenic from water by electrocoagulation.
    Ratna Kumar P; Chaudhari S; Khilar KC; Mahajan SP
    Chemosphere; 2004 Jun; 55(9):1245-52. PubMed ID: 15081765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal.
    Gao S; Du M; Tian J; Yang J; Yang J; Ma F; Nan J
    J Hazard Mater; 2010 Oct; 182(1-3):827-34. PubMed ID: 20667652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron removal from geothermal waters by electrocoagulation.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM; Yilmaz MT; Paluluoğlu C
    J Hazard Mater; 2008 May; 153(1-2):146-51. PubMed ID: 17904734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.
    GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ
    Water Sci Technol; 2011; 63(3):385-94. PubMed ID: 21278458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.
    Solak M; Kiliç M; Hüseyin Y; Sencan A
    J Hazard Mater; 2009 Dec; 172(1):345-52. PubMed ID: 19651474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.
    Kiliç MG; Hoşten C; Demirci S
    J Hazard Mater; 2009 Nov; 171(1-3):247-52. PubMed ID: 19576688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water.
    Martínez-Villafañe JF; Montero-Ocampo C; García-Lara AM
    J Hazard Mater; 2009 Dec; 172(2-3):1617-22. PubMed ID: 19747771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical model for defluoridation by batch monopolar electrocoagulation/flotation (ECF) process.
    Emamjomeh MM; Sivakumar M
    J Hazard Mater; 2006 Apr; 131(1-3):118-25. PubMed ID: 16298054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denitrification using a monopolar electrocoagulation/flotation (ECF) process.
    Emamjomeh MM; Sivakumar M
    J Environ Manage; 2009; 91(2):516-22. PubMed ID: 19815333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation.
    Hu CY; Lo SL; Kuan WH; Lee YD
    Water Res; 2005 Mar; 39(5):895-901. PubMed ID: 15743636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low energy ballasted flotation.
    Jarvis P; Buckingham P; Holden B; Jefferson B
    Water Res; 2009 Aug; 43(14):3427-34. PubMed ID: 19524997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Vardar B; Tünay O
    J Hazard Mater; 2009 May; 164(2-3):1586-94. PubMed ID: 18849115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical removal of phenol from oil refinery wastewater.
    Abdelwahab O; Amin NK; El-Ashtoukhy ES
    J Hazard Mater; 2009 Apr; 163(2-3):711-6. PubMed ID: 18755537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of tannery liming drum wastewater by electrocoagulation.
    Sengil IA; Kulaç S; Ozacar M
    J Hazard Mater; 2009 Aug; 167(1-3):940-6. PubMed ID: 19237242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM
    J Hazard Mater; 2007 Jun; 144(1-2):101-7. PubMed ID: 17084968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.
    Kabdaşli I; Arslan T; Olmez-Hanci T; Arslan-Alaton I; Tünay O
    J Hazard Mater; 2009 Jun; 165(1-3):838-45. PubMed ID: 19046620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.