BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20042408)

  • 21. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag.
    Yamaguchi Y
    Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hormonal and pharmacological manipulation of the circadian clock: recent developments and future strategies.
    Richardson G; Tate B
    Sleep; 2000 May; 23 Suppl 3():S77-85. PubMed ID: 10809190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of intermittent fasting on circadian rhythms in mice depends on feeding time.
    Froy O; Chapnik N; Miskin R
    Mech Ageing Dev; 2009 Mar; 130(3):154-60. PubMed ID: 19041664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The human circadian system in normal and disordered sleep.
    Richardson GS
    J Clin Psychiatry; 2005; 66 Suppl 9():3-9; quiz 42-3. PubMed ID: 16336035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod.
    Johnston JD
    J Neuroendocrinol; 2005 Jul; 17(7):459-65. PubMed ID: 15946164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents.
    Dardente H; Menet JS; Challet E; Tournier BB; Pévet P; Masson-Pévet M
    Brain Res Mol Brain Res; 2004 May; 124(2):143-51. PubMed ID: 15135222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Clock genes, circadian rhythms and food intake].
    Challet E
    Pathol Biol (Paris); 2007; 55(3-4):176-7. PubMed ID: 17412526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the circadian clock: from molecular mechanism to physiological disorders.
    Leloup JC; Goldbeter A
    Bioessays; 2008 Jun; 30(6):590-600. PubMed ID: 18478538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice.
    Challet E; Poirel VJ; Malan A; Pévet P
    J Neurosci Res; 2003 Jun; 72(5):629-37. PubMed ID: 12749028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental jetlag disrupts circadian clock genes but improves performance in racehorses after light-dependent rapid resetting of neuroendocrine systems and the rest-activity cycle.
    Tortonese DJ; Preedy DF; Hesketh SA; Webb HN; Wilkinson ES; Allen WR; Fuller CJ; Townsend J; Short RV
    J Neuroendocrinol; 2011 Dec; 23(12):1263-72. PubMed ID: 21919973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifactorial regulation of daily rhythms in expression of the metabolically responsive gene spot14 in the mouse liver.
    Ishihara A; Matsumoto E; Horikawa K; Kudo T; Sakao E; Nemoto A; Iwase K; Sugiyama H; Tamura Y; Shibata S; Takiguchi M
    J Biol Rhythms; 2007 Aug; 22(4):324-34. PubMed ID: 17660449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feeding and circadian clocks.
    Pardini L; Kaeffer B
    Reprod Nutr Dev; 2006; 46(5):463-80. PubMed ID: 17107638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulatory effects of 5-fluorouracil on the rhythmic expression of circadian clock genes: a possible mechanism of chemotherapy-induced circadian rhythm disturbances.
    Terazono H; Hamdan A; Matsunaga N; Hayasaka N; Kaji H; Egawa T; Makino K; Shigeyoshi Y; Koyanagi S; Ohdo S
    Biochem Pharmacol; 2008 Apr; 75(8):1616-22. PubMed ID: 18329632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag.
    Yamaguchi Y; Suzuki T; Mizoro Y; Kori H; Okada K; Chen Y; Fustin JM; Yamazaki F; Mizuguchi N; Zhang J; Dong X; Tsujimoto G; Okuno Y; Doi M; Okamura H
    Science; 2013 Oct; 342(6154):85-90. PubMed ID: 24092737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The suprachiasmatic nucleus participates in food entrainment: a lesion study.
    Angeles-Castellanos M; Salgado-Delgado R; Rodriguez K; Buijs RM; Escobar C
    Neuroscience; 2010 Feb; 165(4):1115-26. PubMed ID: 20004704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues.
    Sujino M; Nagano M; Fujioka A; Shigeyoshi Y; Inouye ST
    Eur J Neurosci; 2007 Nov; 26(10):2731-8. PubMed ID: 17973924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direction-dependent effects of chronic "jet-lag" on hippocampal neurogenesis.
    Kott J; Leach G; Yan L
    Neurosci Lett; 2012 May; 515(2):177-80. PubMed ID: 22465247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase.
    Abe H; Honma S; Ohtsu H; Honma K
    Brain Res Mol Brain Res; 2004 May; 124(2):178-87. PubMed ID: 15135226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.