These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20042460)

  • 1. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F962-72. PubMed ID: 20042460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2010 Feb; 72(2):314-39. PubMed ID: 19915926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optimization study of a mathematical model of the urine concentrating mechanism of the rat kidney.
    Loreto M; Layton AT
    Math Biosci; 2010 Jan; 223(1):66-78. PubMed ID: 19891979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of vasa recta flow on concentrating ability of models of renal inner medulla.
    Stephenson JL; Wang H; Tewarson RP
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F698-709. PubMed ID: 7733327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycles and separations in a model of the renal medulla.
    Thomas SR
    Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.
    Layton AT
    Bull Math Biol; 2007 Apr; 69(3):887-929. PubMed ID: 17265123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
    Dantzler WH; Layton AT; Layton HE; Pannabecker TL
    Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of inner medullary collecting duct NaCl transport in urinary concentration.
    Chandhoke PS; Saidel GM; Knepper MA
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F688-97. PubMed ID: 4061655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional implications of the three-dimensional architecture of the rat renal inner medulla.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F973-87. PubMed ID: 20053796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal medullary concentrating process: an integrative hypothesis.
    Bonventre JV; Lechene C
    Am J Physiol; 1980 Dec; 239(6):F578-88. PubMed ID: 7446733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results.
    Wexler AS; Kalaba RE; Marsh DJ
    Am J Physiol; 1991 Mar; 260(3 Pt 2):F384-94. PubMed ID: 2000955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2006 Oct; 68(7):1625-60. PubMed ID: 16967257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varying salt and urea permeabilities along descending limbs of Henle in a model of the renal medullary urine concentrating mechanism.
    Thomas SR
    Bull Math Biol; 1991; 53(6):825-43. PubMed ID: 1958893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental tests of three-dimensional model of urinary concentrating mechanism.
    Han JS; Thompson KA; Chou CL; Knepper MA
    J Am Soc Nephrol; 1992 Jun; 2(12):1677-88. PubMed ID: 1498275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.