BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20042596)

  • 1. Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles.
    Dames SA
    J Biol Chem; 2010 Mar; 285(10):7766-75. PubMed ID: 20042596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the immersion properties of the peripheral membrane anchor of the FATC domain of the kinase "target of rapamycin" by NMR, oriented CD spectroscopy, and MD simulations.
    Sommer LA; Janke JJ; Bennett WF; Bürck J; Ulrich AS; Tieleman DP; Dames SA
    J Phys Chem B; 2014 May; 118(18):4817-31. PubMed ID: 24725177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.
    De Cicco M; Milroy LG; Dames SA
    Protein Sci; 2018 Feb; 27(2):546-560. PubMed ID: 29024217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy.
    Sommer LA; Dames SA
    FEBS Lett; 2014 May; 588(9):1755-66. PubMed ID: 24704685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.
    Dames SA; Mulet JM; Rathgeb-Szabo K; Hall MN; Grzesiek S
    J Biol Chem; 2005 May; 280(21):20558-64. PubMed ID: 15772072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR- and circular dichroism-monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3-kinase-related kinases (PIKK).
    Sommer LA; Schaad M; Dames SA
    J Biol Chem; 2013 Jul; 288(27):20046-63. PubMed ID: 23671275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated.
    Abd Rahim MS; Cherniavskyi YK; Tieleman DP; Dames SA
    J Biol Chem; 2019 Apr; 294(17):7098-7112. PubMed ID: 30867195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle.
    Bhunia A; Domadia PN; Mohanram H; Bhattacharjya S
    Proteins; 2009 Feb; 74(2):328-43. PubMed ID: 18618697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCalpha.
    Sturgill TW; Hall MN
    ACS Chem Biol; 2009 Dec; 4(12):999-1015. PubMed ID: 19902965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1).
    Strahl T; Huttner IG; Lusin JD; Osawa M; King D; Thorner J; Ames JB
    J Biol Chem; 2007 Oct; 282(42):30949-59. PubMed ID: 17720810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection.
    Bader R; Bettio A; Beck-Sickinger AG; Zerbe O
    J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid.
    Rodriguez Camargo DC; Link NM; Dames SA
    Biochemistry; 2012 Jun; 51(24):4909-21. PubMed ID: 22620485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOR1 and TOR2 have distinct locations in live cells.
    Sturgill TW; Cohen A; Diefenbacher M; Trautwein M; Martin DE; Hall MN
    Eukaryot Cell; 2008 Oct; 7(10):1819-30. PubMed ID: 18723607
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Rahim MSA; Sommer LAM; Wacker A; Schaad M; Dames SA
    Biomol NMR Assign; 2018 Apr; 12(1):149-154. PubMed ID: 29349619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesigning TOR Kinase to Explore the Structural Basis for TORC1 and TORC2 Assembly.
    Hill A; Niles B; Cuyegkeng A; Powers T
    Biomolecules; 2018 Jun; 8(2):. PubMed ID: 29865216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key motif to gain selectivity at the neuropeptide Y5-receptor: structure and dynamics of micelle-bound [Ala31, Pro32]-NPY.
    Bader R; Rytz G; Lerch M; Beck-Sickinger AG; Zerbe O
    Biochemistry; 2002 Jun; 41(25):8031-42. PubMed ID: 12069594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of the specificity of a membrane binding domain of the scaffold protein Ste5 of budding yeast: implications in signaling by the scaffold protein in MAPK pathway.
    Bhunia A; Mohanram H; Bhattacharjya S
    Biochim Biophys Acta; 2012 May; 1818(5):1250-60. PubMed ID: 22285780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues.
    Coïc YM; Vincent M; Gallay J; Baleux F; Mousson F; Beswick V; Neumann JM; de Foresta B
    Eur Biophys J; 2005 Dec; 35(1):27-39. PubMed ID: 16025323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies of the anti-apoptotic protein Bcl-xL in micelles.
    Losonczi JA; Olejniczak ET; Betz SF; Harlan JE; Mack J; Fesik SW
    Biochemistry; 2000 Sep; 39(36):11024-33. PubMed ID: 10998239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular organization of target of rapamycin complex 2.
    Wullschleger S; Loewith R; Oppliger W; Hall MN
    J Biol Chem; 2005 Sep; 280(35):30697-704. PubMed ID: 16002396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.