These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 200426)
1. Mechanism of activation of the protein kinase I from rabbit skeletal muscle. The high-affinity ATP site of the holoenzyme. Hoppe J; Marutzky R; Freist W; Wagner KG Eur J Biochem; 1977 Nov; 80(2):369-72. PubMed ID: 200426 [TBL] [Abstract][Full Text] [Related]
2. [Interaction of N1-, N6- and C8-substituted derivatives of adenosine-5'-triphosphate with the catalytic subunit of cAMP-dependent protein kinase from rabbit skeletal muscles]. Baranova LA; Grivennikov IA; Guliaev NN Biokhimiia; 1982 Nov; 47(11):1806-13. PubMed ID: 6295513 [TBL] [Abstract][Full Text] [Related]
3. Localization of the high-affinity ATP site in adenosine-3':5'-monophosphate-dependent protein kinase type I. Photoaffinity labelling studies with 8-azidoadenosine 5'-triphosphate. Hoppe J; Freist W Eur J Biochem; 1979 Jan; 93(1):141-6. PubMed ID: 220043 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of activation of protein kinase I from rabbit skeletal muscle. The equilibrium parameters of ligand interaction and protein dissociation. Hoppe J; Lawaczeck R; Rieke E; Wagner KG Eur J Biochem; 1978 Oct; 90(3):585-93. PubMed ID: 213281 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of activation of protein kinase I from rabbit skeletal muscle. Mapping of the cAMP site by spin-labeled cyclic nucleotides. Hoppe J; Rieke E; Wagner KG Eur J Biochem; 1978 Feb; 83(2):411-7. PubMed ID: 204479 [TBL] [Abstract][Full Text] [Related]
6. Adenosine cyclic 3',5'-monophosphate dependent protein kinase: interaction of the catalytic subunit and holoenzyme with lin-benzoadenine nucleotides. Hartl FT; Roskoski R; Rosendahl MS; Leonard NJ Biochemistry; 1983 May; 22(10):2347-52. PubMed ID: 6305401 [TBL] [Abstract][Full Text] [Related]
7. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. Hofmann F; Beavo JA; Bechtel PJ; Krebs EG J Biol Chem; 1975 Oct; 250(19):7795-801. PubMed ID: 170270 [TBL] [Abstract][Full Text] [Related]
8. The function of Mg-ATP in interactions between the regulatory and catalytic subunits of type I cAMP-dependent protein kinase from rabbit skeletal muscle. Kochevar LE; Huang LC; Huang CH Int J Biochem; 1986; 18(6):519-24. PubMed ID: 3011540 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Ogreid D; Ekanger R; Suva RH; Miller JP; Døskeland SO Eur J Biochem; 1989 Apr; 181(1):19-31. PubMed ID: 2540965 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle. Beavo JA; Bechtel PJ; Krebs EG Adv Cyclic Nucleotide Res; 1975; 5():241-51. PubMed ID: 165668 [TBL] [Abstract][Full Text] [Related]
12. The ATP substrate site of a cyclic-nucleotide-independent protein kinase from porcine liver nuclei. Baydoun H; Hoppe J; Freist W; Wagner KG Eur J Biochem; 1981 Apr; 115(2):385-9. PubMed ID: 6263628 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of activation of protein kinase I from rabbit skeletal muscle. Investigation with agarose-immobilized cAMP derivatives. Rieke E; Hoppe J; Wagner KG Eur J Biochem; 1978 Feb; 83(2):419-26. PubMed ID: 204480 [No Abstract] [Full Text] [Related]
14. Interaction of the subunits of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of muscle. Brostrom CO; Corbin JD; King CA; Krebs EG Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2444-7. PubMed ID: 4332811 [TBL] [Abstract][Full Text] [Related]
15. Gamma-phosphate-linked ATP-sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Haystead CM; Gregory P; Sturgill TW; Haystead TA Eur J Biochem; 1993 Jun; 214(2):459-67. PubMed ID: 8513796 [TBL] [Abstract][Full Text] [Related]
16. Rabbit skeletal muscle protein kinase. Conversion from cAMP dependent to independent form by chemical perturbations. Huang LC; Huang C Biochemistry; 1975 Jan; 14(1):18-24. PubMed ID: 162829 [TBL] [Abstract][Full Text] [Related]
17. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. de Wit RJ; Hoppe J; Stec WJ; Baraniak J; Jastorff B Eur J Biochem; 1982 Feb; 122(1):95-9. PubMed ID: 6277633 [TBL] [Abstract][Full Text] [Related]
18. The kinetics of effector binding to phosphofructokinase. The binding of Mg2+-1,N6-ethenoadenosine triphosphate to the catalytic site. Roberts D; Kellett GL Biochem J; 1980 Sep; 189(3):561-7. PubMed ID: 6260083 [TBL] [Abstract][Full Text] [Related]
19. [cAMP-dependent protein kinase from pigeon breast muscle. Isolation of regulatory subunits by affinity chromatography and study of the topography of the cAMP binding site using cAMP analogs]. Grivennikov IA; Petukhov SP; Bulargina TV; Guliaev NN; Severin ES Biokhimiia; 1984 Sep; 49(9):1395-406. PubMed ID: 6097305 [TBL] [Abstract][Full Text] [Related]
20. [Some properties of the catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase from pigeon breast muscle]. Grivennikov IA; Bulargina TV; Khropov IuV; Guliaev NN; Severin SE Biokhimiia; 1979 May; 44(5):771-80. PubMed ID: 36926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]