BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 20042611)

  • 1. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.
    Ding B; LeJeune D; Li S
    J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair.
    Selvam K; Ding B; Sharma R; Li S
    J Mol Biol; 2019 Mar; 431(7):1322-1338. PubMed ID: 30790631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin.
    Duan M; Selvam K; Wyrick JJ; Mao P
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18608-18616. PubMed ID: 32690696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair.
    Tatum D; Li W; Placer M; Li S
    J Biol Chem; 2011 Sep; 286(35):30304-30313. PubMed ID: 21737840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.
    Zhou K; Kuo WH; Fillingham J; Greenblatt JF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair.
    Li W; Selvam K; Rahman SA; Li S
    Nucleic Acids Res; 2016 Aug; 44(14):6794-802. PubMed ID: 27179024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly.
    Viktorovskaya OV; Appling FD; Schneider DA
    J Biol Chem; 2011 May; 286(21):18825-33. PubMed ID: 21467036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively.
    Anderson SJ; Sikes ML; Zhang Y; French SL; Salgia S; Beyer AL; Nomura M; Schneider DA
    J Biol Chem; 2011 May; 286(21):18816-24. PubMed ID: 21467039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of the CSB homolog, RAD26, yields Spt(-) strains with proficient transcription-coupled repair.
    Gregory SM; Sweder KS
    Nucleic Acids Res; 2001 Jul; 29(14):3080-6. PubMed ID: 11452033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage.
    Jansen LE; Belo AI; Hulsker R; Brouwer J
    Nucleic Acids Res; 2002 Aug; 30(16):3532-9. PubMed ID: 12177294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
    Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A
    Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26.
    Li S
    DNA Repair (Amst); 2015 Dec; 36():43-48. PubMed ID: 26429063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand.
    Bucheli M; Sweder K
    Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers.
    Xu J; Wang W; Xu L; Chen JY; Chong J; Oh J; Leschziner AE; Fu XD; Wang D
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25486-25493. PubMed ID: 32989164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins.
    Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA
    Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription.
    Quan TK; Hartzog GA
    Genetics; 2010 Feb; 184(2):321-34. PubMed ID: 19948887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.