These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20043662)

  • 41. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.
    Ünlü A; Meran M; Dinc B; Karatepe N; Bektaş M; Güner FS
    Mol Biol Rep; 2018 Aug; 45(4):523-531. PubMed ID: 29797174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. C60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro.
    Afanasieva KS; Prylutska SV; Lozovik AV; Bogutska KI; Sivolob AV; Prylutskyy YI; Ritter U; Scharff P
    Ukr Biochem J; 2015; 87(1):91-8. PubMed ID: 26036135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes.
    Wang Y; Yang ST; Wang Y; Liu Y; Wang H
    Colloids Surf B Biointerfaces; 2012 Sep; 97():62-9. PubMed ID: 22609583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface chemistry dependent "switch" regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes.
    Das M; Singh RP; Datir SR; Jain S
    Bioconjug Chem; 2013 Apr; 24(4):626-39. PubMed ID: 23517108
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy.
    Tang L; Tong R; Coyle VJ; Yin Q; Pondenis H; Borst LB; Cheng J; Fan TM
    ACS Nano; 2015 May; 9(5):5072-81. PubMed ID: 25938427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer.
    Prickett WM; Van Rite BD; Resasco DE; Harrison RG
    Nanotechnology; 2011 Nov; 22(45):455101. PubMed ID: 21993223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth.
    Hampel S; Kunze D; Haase D; Krämer K; Rauschenbach M; Ritschel M; Leonhardt A; Thomas J; Oswald S; Hoffmann V; Büchner B
    Nanomedicine (Lond); 2008 Apr; 3(2):175-82. PubMed ID: 18373424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Doxorubicin Encapsulation in Carbon Nanotubes Having Haeckelite or Stone-Wales Defects as Drug Carriers: A Molecular Dynamics Approach.
    Contreras L; Villarroel I; Torres C; Rozas R
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33805628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carboxylated hydroxyethyl starch: a novel polysaccharide for the delivery of doxorubicin.
    Paleos CM; Sideratou Z; Theodossiou TA; Tsiourvas D
    Chem Biol Drug Des; 2015 May; 85(5):653-8. PubMed ID: 25303215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF₄:Eu structures for cancer therapy.
    Li X; Hanagata N; Wang X; Yamaguchi M; Yi W; Bando Y; Golberg D
    Chem Commun (Camb); 2014 Apr; 50(33):4371-4. PubMed ID: 24643626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting carbon nanotubes against cancer.
    Fabbro C; Ali-Boucetta H; Da Ros T; Kostarelos K; Bianco A; Prato M
    Chem Commun (Camb); 2012 Apr; 48(33):3911-26. PubMed ID: 22428156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated oxidations: pharmacokinetic implications.
    Seo W; Kapralov AA; Shurin GV; Shurin MR; Kagan VE; Star A
    Nanoscale; 2015 May; 7(19):8689-94. PubMed ID: 25902750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RGD-modified PEG-PAMAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells.
    Zhu S; Qian L; Hong M; Zhang L; Pei Y; Jiang Y
    Adv Mater; 2011 Mar; 23(12):H84-9. PubMed ID: 21360776
    [No Abstract]   [Full Text] [Related]  

  • 54. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
    Ortega-Guerrero A; Espinosa-Duran JM; Velasco-Medina J
    Eur Biophys J; 2016 Jul; 45(5):423-33. PubMed ID: 26872481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting Tumor Endothelial Cells with Nanoparticles.
    Sakurai Y; Akita H; Harashima H
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31756900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanotubes in biological applications.
    Mundra RV; Wu X; Sauer J; Dordick JS; Kane RS
    Curr Opin Biotechnol; 2014 Aug; 28():25-32. PubMed ID: 24832071
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biophilic carbon nanotubes.
    Mallick K; Strydom AM
    Colloids Surf B Biointerfaces; 2013 May; 105():310-8. PubMed ID: 23384693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chitosan-based hybrid nanospheres for vessel normalization towards enhancing tumor chemotherapy.
    Wang D; Chu Y; Liu S; Tan L
    Int J Biol Macromol; 2024 May; 267(Pt 1):131409. PubMed ID: 38582478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fullerene Derivatives (C
    Al Garalleh H
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Carbon Nanotubes and Its Derivatives on Tumor Cells In Vitro and Biochemical Parameters, Cellular Blood Composition In Vivo.
    Perepelytsina OM; Ugnivenko AP; Dobrydnev AV; Bakalinska ON; Marynin AI; Sydorenko MV
    Nanoscale Res Lett; 2018 Sep; 13(1):286. PubMed ID: 30209630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.