BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20043927)

  • 1. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiological models with non-exponentially distributed disease stages and applications to disease control.
    Feng Z; Xu D; Zhao H
    Bull Math Biol; 2007 Jul; 69(5):1511-36. PubMed ID: 17237913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of emerging infectious diseases using responsive imperfect vaccination and isolation.
    Ball FG; Knock ES; O'Neill PD
    Math Biosci; 2008 Nov; 216(1):100-13. PubMed ID: 18789951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0.
    Huang SZ
    Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease.
    Sang Z; Qiu Z; Yan X; Zou Y
    Math Biosci Eng; 2012 Jan; 9(1):147-64. PubMed ID: 22229401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integral equation model for the control of a smallpox outbreak.
    Aldis GK; Roberts MG
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation versus quarantine and alternative measures to control emerging infectious diseases.
    Al-Ateeg FA
    Saudi Med J; 2004 Oct; 25(10):1337-46. PubMed ID: 15494798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Final and peak epidemic sizes for SEIR models with quarantine and isolation.
    Feng Z
    Math Biosci Eng; 2007 Oct; 4(4):675-86. PubMed ID: 17924718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonally varying epidemics with and without latent period: a comparative simulation study.
    Moneim IA
    Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An application of queuing theory to SIS and SEIS epidemic models.
    Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K
    Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of the effect of varicella outbreak control measures through a discrete time delay SEIR model].
    Pan JR; Huang ZQ; Chen K
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Apr; 46(4):343-7. PubMed ID: 22800634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal intervention for an epidemic model under parameter uncertainty.
    Clancy D; Green N
    Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.