These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 20043927)
1. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness. Yan P; Feng Z Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927 [TBL] [Abstract][Full Text] [Related]
2. Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Feng Z; Xu D; Zhao H Bull Math Biol; 2007 Jul; 69(5):1511-36. PubMed ID: 17237913 [TBL] [Abstract][Full Text] [Related]
3. Epidemic modelling: aspects where stochasticity matters. Britton T; Lindenstrand D Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097 [TBL] [Abstract][Full Text] [Related]
4. Control of emerging infectious diseases using responsive imperfect vaccination and isolation. Ball FG; Knock ES; O'Neill PD Math Biosci; 2008 Nov; 216(1):100-13. PubMed ID: 18789951 [TBL] [Abstract][Full Text] [Related]
5. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0. Huang SZ Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064 [TBL] [Abstract][Full Text] [Related]
6. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. Yan P J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153 [TBL] [Abstract][Full Text] [Related]
7. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Sang Z; Qiu Z; Yan X; Zou Y Math Biosci Eng; 2012 Jan; 9(1):147-64. PubMed ID: 22229401 [TBL] [Abstract][Full Text] [Related]
8. An integral equation model for the control of a smallpox outbreak. Aldis GK; Roberts MG Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002 [TBL] [Abstract][Full Text] [Related]
9. Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Ball F; Sirl D; Trapman P Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881 [TBL] [Abstract][Full Text] [Related]
10. Isolation versus quarantine and alternative measures to control emerging infectious diseases. Al-Ateeg FA Saudi Med J; 2004 Oct; 25(10):1337-46. PubMed ID: 15494798 [TBL] [Abstract][Full Text] [Related]
11. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Feng Z Math Biosci Eng; 2007 Oct; 4(4):675-86. PubMed ID: 17924718 [TBL] [Abstract][Full Text] [Related]
12. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Huang G; Takeuchi Y; Ma W; Wei D Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354 [TBL] [Abstract][Full Text] [Related]
13. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Griffin JT; Garske T; Ghani AC; Clarke PS Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771 [TBL] [Abstract][Full Text] [Related]
14. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
15. Seasonally varying epidemics with and without latent period: a comparative simulation study. Moneim IA Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756 [TBL] [Abstract][Full Text] [Related]
16. The basic reproduction number and the probability of extinction for a dynamic epidemic model. Neal P Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870 [TBL] [Abstract][Full Text] [Related]
17. An application of queuing theory to SIS and SEIS epidemic models. Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709 [TBL] [Abstract][Full Text] [Related]
18. Optimal treatment of an SIR epidemic model with time delay. Zaman G; Kang YH; Jung IH Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340 [TBL] [Abstract][Full Text] [Related]
19. [Evaluation of the effect of varicella outbreak control measures through a discrete time delay SEIR model]. Pan JR; Huang ZQ; Chen K Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Apr; 46(4):343-7. PubMed ID: 22800634 [TBL] [Abstract][Full Text] [Related]
20. Optimal intervention for an epidemic model under parameter uncertainty. Clancy D; Green N Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]