These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20044041)
1. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Gomes-Alves P; Couto F; Pesquita C; Coelho AV; Penque D Biochim Biophys Acta; 2010 Apr; 1804(4):856-65. PubMed ID: 20044041 [TBL] [Abstract][Full Text] [Related]
2. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Roxo-Rosa M; Xu Z; Schmidt A; Neto M; Cai Z; Soares CM; Sheppard DN; Amaral MD Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17891-6. PubMed ID: 17098864 [TBL] [Abstract][Full Text] [Related]
3. Low temperature restoring effect on F508del-CFTR misprocessing: A proteomic approach. Gomes-Alves P; Neves S; Coelho AV; Penque D J Proteomics; 2009 Dec; 73(2):218-30. PubMed ID: 19775599 [TBL] [Abstract][Full Text] [Related]
4. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR. Xu Z; Pissarra LS; Farinha CM; Liu J; Cai Z; Thibodeau PH; Amaral MD; Sheppard DN J Physiol; 2014 May; 592(9):1931-47. PubMed ID: 24591578 [TBL] [Abstract][Full Text] [Related]
5. F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Hegedus T; Aleksandrov A; Cui L; Gentzsch M; Chang XB; Riordan JR Biochim Biophys Acta; 2006 May; 1758(5):565-72. PubMed ID: 16624253 [TBL] [Abstract][Full Text] [Related]
6. Calumenin contributes to ER-Ca Philippe R; Antigny F; Buscaglia P; Norez C; Huguet F; Castelbou C; Trouvé P; Becq F; Frieden M; Férec C; Mignen O Cell Calcium; 2017 Mar; 62():47-59. PubMed ID: 28189267 [TBL] [Abstract][Full Text] [Related]
7. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. Norez C; Bilan F; Kitzis A; Mettey Y; Becq F J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692 [TBL] [Abstract][Full Text] [Related]
9. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. Chung WJ; Goeckeler-Fried JL; Havasi V; Chiang A; Rowe SM; Plyler ZE; Hong JS; Mazur M; Piazza GA; Keeton AB; White EL; Rasmussen L; Weissman AM; Denny RA; Brodsky JL; Sorscher EJ PLoS One; 2016; 11(10):e0163615. PubMed ID: 27732613 [TBL] [Abstract][Full Text] [Related]
10. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Norez C; Antigny F; Becq F; Vandebrouck C Traffic; 2006 May; 7(5):562-73. PubMed ID: 16643279 [TBL] [Abstract][Full Text] [Related]
11. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690 [TBL] [Abstract][Full Text] [Related]
12. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR. Sato Y; Thomas DY; Hanrahan JW J Biol Chem; 2019 Nov; 294(48):18269-18284. PubMed ID: 31645438 [TBL] [Abstract][Full Text] [Related]
14. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
15. Proteomic identification of calumenin as a G551D-CFTR associated protein. Teng L; Kerbiriou M; Taiya M; Le Hir S; Mignen O; Benz N; Trouvé P; Férec C PLoS One; 2012; 7(6):e40173. PubMed ID: 22768251 [TBL] [Abstract][Full Text] [Related]
16. Rescue of F508del CFTR: Commentary on "F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive". Tümmler B Biochim Biophys Acta; 2006 May; 1758(5):563-4. PubMed ID: 16712779 [No Abstract] [Full Text] [Related]
17. A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. Boucherle B; Bertrand J; Maurin B; Renard BL; Fortuné A; Tremblier B; Becq F; Norez C; Décout JL Eur J Med Chem; 2014 Aug; 83():455-65. PubMed ID: 24992073 [TBL] [Abstract][Full Text] [Related]
18. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. Farinha CM; Matos P; Amaral MD FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658 [TBL] [Abstract][Full Text] [Related]
19. Signaling pathways of proteostasis network unraveled by proteomic approaches on the understanding of misfolded protein rescue. Gomes-Alves P; Neves S; Penque D Methods Enzymol; 2011; 491():217-33. PubMed ID: 21329803 [TBL] [Abstract][Full Text] [Related]
20. Proteomic interaction profiling reveals KIFC1 as a factor involved in early targeting of F508del-CFTR to degradation. Canato S; Santos JD; Carvalho AS; Aloria K; Amaral MD; Matthiesen R; Falcao AO; Farinha CM Cell Mol Life Sci; 2018 Dec; 75(24):4495-4509. PubMed ID: 30066085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]