BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20044117)

  • 1. Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated-unsaturated interface region of an aquifer.
    Ronen D; Lev-Wiener H; Graber ER; Dahan O; Weisbrod N
    Water Res; 2010 Apr; 44(7):2107-12. PubMed ID: 20044117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer.
    Hunkeler D; Aravena R; Shouakar-Stash O; Weisbrod N; Nasser A; Netzer L; Ronen D
    Environ Sci Technol; 2011 Oct; 45(19):8247-53. PubMed ID: 21870853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of atmosphere/aquatic environment concentration ratio of volatile chlorinated hydrocarbons between temperate regions and Antarctica.
    Zoccolillo L; Amendola L; Insogna S
    Chemosphere; 2009 Sep; 76(11):1525-32. PubMed ID: 19541344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers.
    Marcus DL; Bonds C
    J Hazard Mater; 1999 Aug; 68(1-2):125-53. PubMed ID: 10518668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Volatile organochlorine compounds in human tissue].
    Alles G; Bauer U; Selenka F
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1988 Jun; 186(3):233-46. PubMed ID: 3138840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications.
    Di Lorenzo T; Borgoni R; Ambrosini R; Cifoni M; Galassi DM; Petitta M
    Sci Total Environ; 2015 Dec; 538():712-23. PubMed ID: 26327639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR.
    Hunkeler D; Abe Y; Broholm MM; Jeannottat S; Westergaard C; Jacobsen CS; Aravena R; Bjerg PL
    J Contam Hydrol; 2011 Jan; 119(1-4):69-79. PubMed ID: 21030108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorinated organic compounds in urban air in Japan.
    Urano K; Kawamoto K; Abe Y; Otake M
    Sci Total Environ; 1988 Aug; 74():121-31. PubMed ID: 3222689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of volatile organic compounds in river sediment.
    Kawata K; Tanabe A; Saito S; Sakai M; Yasuhara A
    Bull Environ Contam Toxicol; 1997 Jun; 58(6):893-900. PubMed ID: 9136651
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of the emissions of trichloroethylene, chloroform, and 1,2-dibromo-3-chloropropane in a full-size, experimental shower.
    Giardino NJ; Andelman JB
    J Expo Anal Environ Epidemiol; 1996; 6(4):413-23. PubMed ID: 9087862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters.
    Kuster M; Díaz-Cruz S; Rosell M; López de Alda M; Barceló D
    Chemosphere; 2010 May; 79(8):880-6. PubMed ID: 20226495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priority volatile organic compounds in surface waters of the southern North Sea.
    Huybrechts T; Dewulf J; Van Langenhove H
    Environ Pollut; 2005 Jan; 133(2):255-64. PubMed ID: 15519456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.
    Huang B; Lei C; Wei C; Zeng G
    Environ Int; 2014 Oct; 71():118-38. PubMed ID: 25016450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds.
    Long C; Liu P; Li Y; Li A; Zhang Q
    Environ Sci Technol; 2011 May; 45(10):4506-12. PubMed ID: 21488665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.
    Ellis PA; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):107-27. PubMed ID: 17182150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas.
    Johnston JE; Gibson JM
    Environ Sci Technol; 2011 Feb; 45(3):1007-13. PubMed ID: 21162557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Human exposure to environmental chemicals - investigations on volatile organic halogenated compounds in water, air, food, and human tissues. III. Communication: results of investigations (author's transl)].
    Bauer U
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Dec; 174(3):200-37. PubMed ID: 7331583
    [No Abstract]   [Full Text] [Related]  

  • 19. [Halogenated volatile organic compounds in bottled mineral water and soft drinks].
    Fantuzzi G; Righi E; Predieri G; Pinotti MA; Aggazzotti G
    Ann Ig; 2004; 16(6):727-34. PubMed ID: 15697002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniaturized membrane-assisted solvent extraction combined with gas chromatography/electron-capture detection applied to the analysis of volatile organic compounds.
    Schellin M; Popp P
    J Chromatogr A; 2006 Jan; 1103(2):211-8. PubMed ID: 16325836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.