These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 20044212)

  • 1. The resonance theory of coronary arterial wall stress as an explanation for the distribution of coronary artery disease.
    John LC
    Med Hypotheses; 2010 May; 74(5):820-2. PubMed ID: 20044212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the evolution of the shear stress on the restenosis after coronary angioplasty.
    García J; Crespo A; Goicolea J; Sanmartín M; García C
    J Biomech; 2006; 39(5):799-805. PubMed ID: 16488219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence.
    Suo J; Oshinski JN; Giddens DP
    Mol Cell Biomech; 2008 Mar; 5(1):9-18. PubMed ID: 18524242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive mechanical properties of porcine left circumflex artery and its mathematical description.
    Carboni M; Desch GW; Weizsäcker HW
    Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of atherosclerosis on thermo-mechanical properties of arterial wall and its repercussion on plaque instability.
    Guinea GV; Atienza JM; Fantidis P; Rojo FJ; Ortega A; Torres M; Gonzalez P; Elices ML; Hayashi K; Elices M
    Int J Cardiol; 2009 Mar; 132(3):444-6. PubMed ID: 18164083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo.
    Gijsen FJ; Wentzel JJ; Thury A; Lamers B; Schuurbiers JC; Serruys PW; van der Steen AF
    J Biomech; 2007; 40(11):2349-57. PubMed ID: 17335832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries.
    Balzani D; Schröder J; Gross D
    Acta Biomater; 2006 Nov; 2(6):609-18. PubMed ID: 16945600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gender differences in biomechanical properties of intramural coronary resistance arteries of rats, an in vitro microarteriographic study.
    Matrai M; Mericli M; Nadasy GL; Szekeres M; Varbiro S; Banhidy F; Acs N; Monos E; Szekacs B
    J Biomech; 2007; 40(5):1024-30. PubMed ID: 16730738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the dynamic geometry and wall thickness of a human coronary artery.
    Zhu H; Friedman MH
    Arterioscler Thromb Vasc Biol; 2003 Dec; 23(12):2260-5. PubMed ID: 14500289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The natural frequencies of the arterial system and their relation to the heart rate.
    Lin Wang YY; Jan MY; Shyu CS; Chiang CA; Wang WK
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):193-5. PubMed ID: 14723511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is left coronary system more susceptible to atherosclerosis than right? A pathophysiological insight.
    Chatzizisis YS; Giannoglou GD; Parcharidis GE; Louridas GE
    Int J Cardiol; 2007 Mar; 116(1):7-13. PubMed ID: 16908081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery.
    Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O
    Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different stent designs on local hemodynamics in stented arteries.
    Balossino R; Gervaso F; Migliavacca F; Dubini G
    J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.