These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 20044306)
21. Design, synthesis, evaluation, and crystallographic-based structural studies of HIV-1 protease inhibitors with reduced response to the V82A mutation. Clemente JC; Robbins A; Graña P; Paleo MR; Correa JF; Villaverde MC; Sardina FJ; Govindasamy L; Agbandje-McKenna M; McKenna R; Dunn BM; Sussman F J Med Chem; 2008 Feb; 51(4):852-60. PubMed ID: 18215016 [TBL] [Abstract][Full Text] [Related]
22. From SAR to comparative QSAR: role of hydrophobicity in the design of 4-hydroxy-5,6-dihydropyran-2-ones HIV-1 protease inhibitors. Bhhatarai B; Garg R Bioorg Med Chem; 2005 Jun; 13(12):4078-84. PubMed ID: 15911321 [TBL] [Abstract][Full Text] [Related]
23. Structure-based design: synthesis and biological evaluation of a series of novel cycloamide-derived HIV-1 protease inhibitors. Ghosh AK; Swanson LM; Cho H; Leshchenko S; Hussain KA; Kay S; Walters DE; Koh Y; Mitsuya H J Med Chem; 2005 May; 48(10):3576-85. PubMed ID: 15887965 [TBL] [Abstract][Full Text] [Related]
24. Structural stability and electronic property of C68X4 (X=H, F, and Cl) fullerene compounds. Tang SW; Feng JD; Sun LL; Wang FD; Sun H; Chang YF; Wang RS J Mol Graph Model; 2010 Jun; 28(8):891-8. PubMed ID: 20430661 [TBL] [Abstract][Full Text] [Related]
25. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. Rezácová P; Pokorná J; Brynda J; Kozísek M; Cígler P; Lepsík M; Fanfrlík J; Rezác J; Grantz Sasková K; Sieglová I; Plesek J; Sícha V; Grüner B; Oberwinkler H; Sedlácek' J; Kräusslich HG; Hobza P; Král V; Konvalinka J J Med Chem; 2009 Nov; 52(22):7132-41. PubMed ID: 19874035 [TBL] [Abstract][Full Text] [Related]
26. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Frecer V; Burello E; Miertus S Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372 [TBL] [Abstract][Full Text] [Related]
27. Receptor-independent 4D-QSAR analysis of a set of norstatine derived inhibitors of HIV-1 protease. Senese CL; Hopfinger AJ J Chem Inf Comput Sci; 2003; 43(4):1297-307. PubMed ID: 12870923 [TBL] [Abstract][Full Text] [Related]
29. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead. Perez MA; Fernandes PA; Ramos MJ J Mol Graph Model; 2007 Oct; 26(3):634-42. PubMed ID: 17459746 [TBL] [Abstract][Full Text] [Related]
30. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. Ali A; Reddy GS; Cao H; Anjum SG; Nalam MN; Schiffer CA; Rana TM J Med Chem; 2006 Dec; 49(25):7342-56. PubMed ID: 17149864 [TBL] [Abstract][Full Text] [Related]
31. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations. Tzoupis H; Leonis G; Durdagi S; Mouchlis V; Mavromoustakos T; Papadopoulos MG J Comput Aided Mol Des; 2011 Oct; 25(10):959-76. PubMed ID: 21969102 [TBL] [Abstract][Full Text] [Related]
32. Modeling interactions between C₆₀ antiviral compounds and HIV protease. Al Garalleh H; Thamwattana N; Cox BJ; Hill JM Bull Math Biol; 2015 Jan; 77(1):184-201. PubMed ID: 25583353 [TBL] [Abstract][Full Text] [Related]
33. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
34. Design and synthesis of sulfoximine based inhibitors for HIV-1 protease. Raza A; Sham YY; Vince R Bioorg Med Chem Lett; 2008 Oct; 18(20):5406-10. PubMed ID: 18829317 [TBL] [Abstract][Full Text] [Related]
35. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. Friedman SH; Ganapathi PS; Rubin Y; Kenyon GL J Med Chem; 1998 Jun; 41(13):2424-9. PubMed ID: 9632374 [TBL] [Abstract][Full Text] [Related]
36. Three-dimensional quantitative structure-activity relationship study on cyclic urea derivatives as HIV-1 protease inhibitors: application of comparative molecular field analysis. Debnath AK J Med Chem; 1999 Jan; 42(2):249-59. PubMed ID: 9925730 [TBL] [Abstract][Full Text] [Related]
37. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Hou T; Yu R J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185 [TBL] [Abstract][Full Text] [Related]
38. Nonpeptidal P2 ligands for HIV protease inhibitors: structure-based design, synthesis, and biological evaluation. Ghosh AK; Kincaid JF; Walters DE; Chen Y; Chaudhuri NC; Thompson WJ; Culberson C; Fitzgerald PM; Lee HY; McKee SP; Munson PM; Duong TT; Darke PL; Zugay JA; Schleif WA; Axel MG; Lin J; Huff JR J Med Chem; 1996 Aug; 39(17):3278-90. PubMed ID: 8765511 [TBL] [Abstract][Full Text] [Related]
39. Potent HIV protease inhibitors containing a novel (hydroxyethyl)amide isostere. Beaulieu PL; Wernic D; Abraham A; Anderson PC; Bogri T; Bousquet Y; Croteau G; Guse I; Lamarre D; Liard F; Paris W; Thibeault D; Pav S; Tong L J Med Chem; 1997 Jul; 40(14):2164-76. PubMed ID: 9216835 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site. Torbeev VY; Mandal K; Terechko VA; Kent SB Bioorg Med Chem Lett; 2008 Aug; 18(16):4554-7. PubMed ID: 18657969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]