BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20044792)

  • 21. Real-time polymerase chain reaction monitoring of recombinant DNA entry into soil from decomposing roundup ready leaf biomass.
    Levy-Booth DJ; Campbell RG; Gulden RH; Hart MM; Powell JR; Klironomos JN; Pauls KP; Swanton CJ; Trevors JT; Dunfield KE
    J Agric Food Chem; 2008 Aug; 56(15):6339-47. PubMed ID: 18570434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.
    Yang L; Xu S; Pan A; Yin C; Zhang K; Wang Z; Zhou Z; Zhang D
    J Agric Food Chem; 2005 Nov; 53(24):9312-8. PubMed ID: 16302741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China.
    Huang F
    Insect Sci; 2021 Jun; 28(3):574-589. PubMed ID: 32478944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.
    Gao X; Zhou J; Li J; Zou X; Zhao J; Li Q; Xia R; Yang R; Wang D; Zuo Z; Tu J; Tao Y; Chen X; Xie Q; Zhu Z; Qu S
    Plant Physiol; 2015 Jan; 167(1):11-24. PubMed ID: 25371551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term persistence and bacterial transformation potential of transplastomic plant DNA in soil.
    Pontiroli A; Ceccherini MT; Poté J; Wildi W; Kay E; Nannipieri P; Vogel TM; Simonet P; Monier JM
    Res Microbiol; 2010 Jun; 161(5):326-34. PubMed ID: 20493252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation of Acinetobacter sp. strain BD413(pFG4DeltanptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants.
    Nielsen KM; van Elsas JD; Smalla K
    Appl Environ Microbiol; 2000 Mar; 66(3):1237-42. PubMed ID: 10698801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria.
    Woegerbauer M; Zeinzinger J; Gottsberger RA; Pascher K; Hufnagl P; Indra A; Fuchs R; Hofrichter J; Kopacka I; Korschineck I; Schleicher C; Schwarz M; Steinwider J; Springer B; Allerberger F; Nielsen KM; Fuchs K
    Environ Pollut; 2015 Nov; 206():342-51. PubMed ID: 26232739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field.
    Zwahlen C; Hilbeck A; Gugerli P; Nentwig W
    Mol Ecol; 2003 Mar; 12(3):765-75. PubMed ID: 12675831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically engineered vegetables expressing proteins from Bacillus thuringiensis for insect resistance: successes, disappointments, challenges and ways to move forward.
    Shelton AM
    GM Crops Food; 2012; 3(3):175-83. PubMed ID: 22538234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crop rotation mitigates impacts of corn rootworm resistance to transgenic Bt corn.
    Carrière Y; Brown Z; Aglasan S; Dutilleul P; Carroll M; Head G; Tabashnik BE; Jørgensen PS; Carroll SP
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18385-18392. PubMed ID: 32690686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops - A global meta-analysis.
    Li Z; Cui J; Mi Z; Tian D; Wang J; Ma Z; Wang B; Chen HYH; Niu S
    Sci Total Environ; 2019 Feb; 651(Pt 2):1830-1838. PubMed ID: 30317171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conventional Soil Management May Promote Nutrients That Lure an Insect Pest to a Toxic Crop.
    Schmidt-Jeffris RA; Moretti EA; Wickings K; Wolfin MS; Northfield TD; Linn CE; Nault BA
    Environ Entomol; 2021 Apr; 50(2):433-443. PubMed ID: 33377151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil.
    Machado EP; Dos S Rodrigues Junior GL; Führ FM; Zago SL; Marques LH; Santos AC; Nowatzki T; Dahmer ML; Omoto C; Bernardi O
    Sci Rep; 2020 Jun; 10(1):10080. PubMed ID: 32572133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae).
    Walker DR; All JN; McPherson RM; Boerma HR; Parrott WA
    J Econ Entomol; 2000 Jun; 93(3):613-22. PubMed ID: 10902306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding successful resistance management: the European corn borer and Bt corn in the United States.
    Siegfried BD; Hellmich RL
    GM Crops Food; 2012; 3(3):184-93. PubMed ID: 22688691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Western corn rootworm and Bt maize: challenges of pest resistance in the field.
    Gassmann AJ; Petzold-Maxwell JL; Keweshan RS; Dunbar MW
    GM Crops Food; 2012; 3(3):235-44. PubMed ID: 22688688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.
    Dively GP; Venugopal PD; Finkenbinder C
    PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of extended diapause on evolution of resistance to transgenic Bacillus thuringiensis corn by northern corn rootworm (Coleoptera: Chrysomelidae).
    Mitchell PD; Onstad DW
    J Econ Entomol; 2005 Dec; 98(6):2220-34. PubMed ID: 16539154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate of genetically modified maize DNA in the oral cavity and rumen of sheep.
    Duggan PS; Chambers PA; Heritage J; Michael Forbes J
    Br J Nutr; 2003 Feb; 89(2):159-66. PubMed ID: 12575900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transgene behavior in Zea mays L. crosses across different genetic backgrounds: Segregation patterns, cry1Ab transgene expression, insecticidal protein concentration and bioactivity against insect pests.
    Lohn AF; Trtikova M; Chapela I; Van den Berg J; du Plessis H; Hilbeck A
    PLoS One; 2020; 15(9):e0238523. PubMed ID: 32911522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.