These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 20044831)
41. Coxiella burnetii whole cell lysate protein identification by mass spectrometry and tandem mass spectrometry. Skultety L; Hernychova L; Toman R; Hubalek M; Slaba K; Zechovska J; Stofanikova V; Lenco J; Stulik J; Macela A Ann N Y Acad Sci; 2005 Dec; 1063():115-22. PubMed ID: 16481502 [TBL] [Abstract][Full Text] [Related]
42. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Voth DE; Heinzen RA Cell Microbiol; 2007 Apr; 9(4):829-40. PubMed ID: 17381428 [TBL] [Abstract][Full Text] [Related]
43. A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Degtyar E; Zusman T; Ehrlich M; Segal G Cell Microbiol; 2009 Aug; 11(8):1219-35. PubMed ID: 19438520 [TBL] [Abstract][Full Text] [Related]
44. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. Skultety L; Hajduch M; Flores-Ramirez G; Miernyk JA; Ciampor F; Toman R; Sekeyova Z J Proteomics; 2011 Sep; 74(10):1974-84. PubMed ID: 21616182 [TBL] [Abstract][Full Text] [Related]
45. Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability. Sanchez SE; Omsland A mSphere; 2020 Jul; 5(4):. PubMed ID: 32699121 [No Abstract] [Full Text] [Related]
46. Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii. Maturana P; Graham JG; Sharma UM; Voth DE J Bacteriol; 2013 Jul; 195(14):3269-76. PubMed ID: 23687269 [TBL] [Abstract][Full Text] [Related]
47. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. Wallqvist A; Wang H; Zavaljevski N; Memišević V; Kwon K; Pieper R; Rajagopala SV; Reifman J PLoS One; 2017; 12(11):e0188071. PubMed ID: 29176882 [TBL] [Abstract][Full Text] [Related]
48. Role for the CD28 molecule in the control of Coxiella burnetii infection. Honstettre A; Meghari S; Nunès JA; Lepidi H; Raoult D; Olive D; Mege JL Infect Immun; 2006 Mar; 74(3):1800-8. PubMed ID: 16495554 [TBL] [Abstract][Full Text] [Related]
49. Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for Vallejo Esquerra E; Yang H; Sanchez SE; Omsland A Front Cell Infect Microbiol; 2017; 7():190. PubMed ID: 28620582 [TBL] [Abstract][Full Text] [Related]
50. Defying Death - How Cordsmeier A; Wagner N; Lührmann A; Berens C Yale J Biol Med; 2019 Dec; 92(4):619-628. PubMed ID: 31866777 [TBL] [Abstract][Full Text] [Related]
51. Polar localization of the Coxiella burnetii type IVB secretion system. Morgan JK; Luedtke BE; Shaw EI FEMS Microbiol Lett; 2010 Apr; 305(2):177-83. PubMed ID: 20199576 [TBL] [Abstract][Full Text] [Related]
52. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. Martinez E; Cantet F; Fava L; Norville I; Bonazzi M PLoS Pathog; 2014 Mar; 10(3):e1004013. PubMed ID: 24651569 [TBL] [Abstract][Full Text] [Related]
53. Lipid A Has Significance for Optimal Growth of Wang T; Yu Y; Liang X; Luo S; He Z; Sun Z; Jiang Y; Omsland A; Zhou P; Song L Front Cell Infect Microbiol; 2018; 8():192. PubMed ID: 29938202 [TBL] [Abstract][Full Text] [Related]
55. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. van Schaik EJ; Chen C; Mertens K; Weber MM; Samuel JE Nat Rev Microbiol; 2013 Aug; 11(8):561-73. PubMed ID: 23797173 [TBL] [Abstract][Full Text] [Related]
56. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation. Rodríguez-Escudero M; Cid VJ; Molina M; Schulze-Luehrmann J; Lührmann A; Rodríguez-Escudero I PLoS One; 2016; 11(1):e0148032. PubMed ID: 26821324 [TBL] [Abstract][Full Text] [Related]
57. Lysosomal degradation products induce Newton P; Thomas DR; Reed SCO; Lau N; Xu B; Ong SY; Pasricha S; Madhamshettiwar PB; Edgington-Mitchell LE; Simpson KJ; Roy CR; Newton HJ Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6801-6810. PubMed ID: 32152125 [No Abstract] [Full Text] [Related]
58. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole. Kohler LJ; Reed ShC; Sarraf SA; Arteaga DD; Newton HJ; Roy CR mBio; 2016 Jul; 7(4):. PubMed ID: 27435465 [TBL] [Abstract][Full Text] [Related]
59. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-α1. Schäfer W; Eckart RA; Schmid B; Cagköylü H; Hof K; Muller YA; Amin B; Lührmann A Cell Microbiol; 2017 Jan; 19(1):. PubMed ID: 27328359 [TBL] [Abstract][Full Text] [Related]
60. Entry of Coxiella burnetii into host cells. Baca OG; Klassen DA; Aragon AS Acta Virol; 1993; 37(2-3):143-55. PubMed ID: 8105658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]