These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 20044918)
1. SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence. Kandaswamy KK; Pugalenthi G; Suganthan PN; Gangal R Protein Pept Lett; 2010 Apr; 17(4):423-30. PubMed ID: 20044918 [TBL] [Abstract][Full Text] [Related]
2. CRYSTALP2: sequence-based protein crystallization propensity prediction. Kurgan L; Razib AA; Aghakhani S; Dick S; Mizianty M; Jahandideh S BMC Struct Biol; 2009 Jul; 9():50. PubMed ID: 19646256 [TBL] [Abstract][Full Text] [Related]
3. Meta prediction of protein crystallization propensity. Mizianty MJ; Kurgan L Biochem Biophys Res Commun; 2009 Dec; 390(1):10-5. PubMed ID: 19755114 [TBL] [Abstract][Full Text] [Related]
4. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection. Wang H; Wang M; Tan H; Li Y; Zhang Z; Song J PLoS One; 2014; 9(8):e105902. PubMed ID: 25148528 [TBL] [Abstract][Full Text] [Related]
5. ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction. Overton IM; Padovani G; Girolami MA; Barton GJ Bioinformatics; 2008 Apr; 24(7):901-7. PubMed ID: 18285371 [TBL] [Abstract][Full Text] [Related]
6. RFCRYS: sequence-based protein crystallization propensity prediction by means of random forest. Jahandideh S; Mahdavi A J Theor Biol; 2012 Aug; 306():115-9. PubMed ID: 22726810 [TBL] [Abstract][Full Text] [Related]
7. XANNpred: neural nets that predict the propensity of a protein to yield diffraction-quality crystals. Overton IM; van Niekerk CA; Barton GJ Proteins; 2011 Apr; 79(4):1027-33. PubMed ID: 21246630 [TBL] [Abstract][Full Text] [Related]
8. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information. Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755 [TBL] [Abstract][Full Text] [Related]
9. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine. Pugalenthi G; Kandaswamy KK; Suganthan PN; Archunan G; Sowdhamini R Amino Acids; 2010 Aug; 39(3):777-83. PubMed ID: 20186553 [TBL] [Abstract][Full Text] [Related]
10. Improving the chances of successful protein structure determination with a random forest classifier. Jahandideh S; Jaroszewski L; Godzik A Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):627-35. PubMed ID: 24598732 [TBL] [Abstract][Full Text] [Related]
11. fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. Meng F; Wang C; Kurgan L BMC Bioinformatics; 2018 Jan; 18(1):580. PubMed ID: 29295714 [TBL] [Abstract][Full Text] [Related]
12. Prediction of protein crystallization using collocation of amino acid pairs. Chen K; Kurgan L; Rahbari M Biochem Biophys Res Commun; 2007 Apr; 355(3):764-9. PubMed ID: 17316561 [TBL] [Abstract][Full Text] [Related]
13. DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. Kumar KK; Pugalenthi G; Suganthan PN J Biomol Struct Dyn; 2009 Jun; 26(6):679-86. PubMed ID: 19385697 [TBL] [Abstract][Full Text] [Related]
14. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145 [TBL] [Abstract][Full Text] [Related]
15. CRYSpred: accurate sequence-based protein crystallization propensity prediction using sequence-derived structural characteristics. Mizianty MJ; Kurgan LA Protein Pept Lett; 2012 Jan; 19(1):40-9. PubMed ID: 21919861 [TBL] [Abstract][Full Text] [Related]
16. Crysalis: an integrated server for computational analysis and design of protein crystallization. Wang H; Feng L; Zhang Z; Webb GI; Lin D; Song J Sci Rep; 2016 Feb; 6():21383. PubMed ID: 26906024 [TBL] [Abstract][Full Text] [Related]
17. Sequence-based prediction of protein crystallization, purification and production propensity. Mizianty MJ; Kurgan L Bioinformatics; 2011 Jul; 27(13):i24-33. PubMed ID: 21685077 [TBL] [Abstract][Full Text] [Related]
18. Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features. Zhu YH; Hu J; Ge F; Li F; Song J; Zhang Y; Yu DJ Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32436937 [TBL] [Abstract][Full Text] [Related]
19. Survey of Predictors of Propensity for Protein Production and Crystallization with Application to Predict Resolution of Crystal Structures. Gao J; Wu Z; Hu G; Wang K; Song J; Joachimiak A; Kurgan L Curr Protein Pept Sci; 2018; 19(2):200-210. PubMed ID: 28933304 [TBL] [Abstract][Full Text] [Related]
20. Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features. Pan S; Shavit G; Penas-Centeno M; Xu DH; Shapiro L; Ladner R; Riskin E; Hol W; Meldrum D Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):271-9. PubMed ID: 16510974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]