BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20045004)

  • 1. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation.
    Chung S; Arrell DK; Faustino RS; Terzic A; Dzeja PP
    J Mol Cell Cardiol; 2010 Apr; 48(4):725-34. PubMed ID: 20045004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac Metabolism.
    Martin-Puig S; Menendez-Montes I
    Adv Exp Med Biol; 2024; 1441():365-396. PubMed ID: 38884721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis.
    Chen T; Xie S; Cheng J; Zhao Q; Wu H; Jiang P; Du W
    Nat Commun; 2024 Jan; 15(1):686. PubMed ID: 38263319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolytic activity of the tissue stem cells in the macula flava of the human vocal fold.
    Sato K; Chitose SI; Sato K; Sato F; Ono T; Umeno H
    Laryngoscope Investig Otolaryngol; 2021 Feb; 6(1):122-128. PubMed ID: 33614940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy.
    Ni X; Lu CP; Xu GQ; Ma JJ
    Acta Pharmacol Sin; 2024 Apr; ():. PubMed ID: 38622288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ratiometric Catalog of Protein Isoform Shifts in the Cardiac Fetal Gene Program.
    Han Y; Wennersten SA; Pandi BP; Ng DCM; Lau E; Lam MPY
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism.
    Acebo P; Giner D; Calvo P; Blanco-Rivero A; Ortega AD; Fernández PL; Roncador G; Fernández-Malavé E; Chamorro M; Cuezva JM
    Transl Oncol; 2009 Aug; 2(3):138-45. PubMed ID: 19701498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crabtree effect in kidney proximal tubule cells via late-stage glycolytic intermediates.
    Darshi M; Tumova J; Saliba A; Kim J; Baek J; Pennathur S; Sharma K
    iScience; 2023 Apr; 26(4):106462. PubMed ID: 37091239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for real-time assessment of mitochondrial and glycolytic ATP production in patient-derived glioma stem-like cells.
    Sharma P; Puduvalli VK
    STAR Protoc; 2024 Jun; 5(3):103159. PubMed ID: 38941182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energetics of cellular life transitions.
    Monzel AS; Levin M; Picard M
    Life Metab; 2024 Jun; 3(3):. PubMed ID: 38566850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.
    Prigione A; Fauler B; Lurz R; Lehrach H; Adjaye J
    Stem Cells; 2010 Apr; 28(4):721-33. PubMed ID: 20201066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells.
    Zhang J; Khvorostov I; Hong JS; Oktay Y; Vergnes L; Nuebel E; Wahjudi PN; Setoguchi K; Wang G; Do A; Jung HJ; McCaffery JM; Kurland IJ; Reue K; Lee WN; Koehler CM; Teitell MA
    EMBO J; 2011 Nov; 30(24):4860-73. PubMed ID: 22085932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells.
    Folmes CD; Martinez-Fernandez A; Faustino RS; Yamada S; Perez-Terzic C; Nelson TJ; Terzic A
    J Cardiovasc Transl Res; 2013 Feb; 6(1):10-21. PubMed ID: 23247633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
    Zhang J; Nuebel E; Daley GQ; Koehler CM; Teitell MA
    Cell Stem Cell; 2012 Nov; 11(5):589-95. PubMed ID: 23122286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic requirements for the maintenance of self-renewing stem cells.
    Ito K; Suda T
    Nat Rev Mol Cell Biol; 2014 Apr; 15(4):243-56. PubMed ID: 24651542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
    Prigione A; Rohwer N; Hoffmann S; Mlody B; Drews K; Bukowiecki R; Blümlein K; Wanker EE; Ralser M; Cramer T; Adjaye J
    Stem Cells; 2014 Feb; 32(2):364-76. PubMed ID: 24123565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OMICS-based exploration of the molecular phenotype of resident cardiac progenitor cells from adult murine heart.
    Samal R; Ameling S; Wenzel K; Dhople V; Völker U; Felix SB; Könemann S; Hammer E
    J Proteomics; 2012 Sep; 75(17):5304-15. PubMed ID: 22749858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.
    Panopoulos AD; Yanes O; Ruiz S; Kida YS; Diep D; Tautenhahn R; Herrerías A; Batchelder EM; Plongthongkum N; Lutz M; Berggren WT; Zhang K; Evans RM; Siuzdak G; Izpisua Belmonte JC
    Cell Res; 2012 Jan; 22(1):168-77. PubMed ID: 22064701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic regulation of hematopoietic stem cells in the hypoxic niche.
    Suda T; Takubo K; Semenza GL
    Cell Stem Cell; 2011 Oct; 9(4):298-310. PubMed ID: 21982230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.