BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20045330)

  • 21. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.
    Dau A; Friederich U; Dongre S; Li X; Bollepalli MK; Hardie RC; Juusola M
    Front Neural Circuits; 2016; 10():19. PubMed ID: 27047343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila.
    Edwards TN; Meinertzhagen IA
    J Neurosci; 2009 Jan; 29(3):828-41. PubMed ID: 19158307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones.
    Nässel DR
    Prog Neurobiol; 2002 Sep; 68(1):1-84. PubMed ID: 12427481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2.
    Monedero Cobeta I; Stadler CB; Li J; Yu P; Thor S; Benito-Sipos J
    PLoS Genet; 2018 Aug; 14(8):e1007496. PubMed ID: 30133436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila.
    McNeill H; Craig GM; Bateman JM
    Genetics; 2008 Jun; 179(2):843-53. PubMed ID: 18505882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The highly ordered assembly of retinal axons and their synaptic partners is regulated by Hedgehog/Single-minded in the Drosophila visual system.
    Umetsu D; Murakami S; Sato M; Tabata T
    Development; 2006 Mar; 133(5):791-800. PubMed ID: 16439478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila.
    Zhang L; Chung BY; Lear BC; Kilman VL; Liu Y; Mahesh G; Meissner RA; Hardin PE; Allada R
    Curr Biol; 2010 Apr; 20(7):591-9. PubMed ID: 20362452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell type-specific regulation of the Drosophila FMRF-NH2 neuropeptide gene by Apterous, a LIM homeodomain transcription factor.
    Benveniste RJ; Thor S; Thomas JB; Taghert PH
    Development; 1998 Dec; 125(23):4757-65. PubMed ID: 9806924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides.
    Nichols R
    Annu Rev Entomol; 2003; 48():485-503. PubMed ID: 12414735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins.
    Hirose F; Ohshima N; Shiraki M; Inoue YH; Taguchi O; Nishi Y; Matsukage A; Yamaguchi M
    Mol Cell Biol; 2001 Nov; 21(21):7231-42. PubMed ID: 11585906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues.
    Suska A; Miguel-Aliaga I; Thor S
    Dev Biol; 2011 May; 353(1):72-80. PubMed ID: 21354130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drosophila CRYPTOCHROME is a circadian transcriptional repressor.
    Collins B; Mazzoni EO; Stanewsky R; Blau J
    Curr Biol; 2006 Mar; 16(5):441-9. PubMed ID: 16527739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LOVIT Is a Putative Vesicular Histamine Transporter Required in Drosophila for Vision.
    Xu Y; Wang T
    Cell Rep; 2019 Apr; 27(5):1327-1333.e3. PubMed ID: 31042461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional control of stem cell maintenance in the Drosophila intestine.
    Bardin AJ; Perdigoto CN; Southall TD; Brand AH; Schweisguth F
    Development; 2010 Mar; 137(5):705-14. PubMed ID: 20147375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
    Bulgari D; Zhou C; Hewes RS; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3597-601. PubMed ID: 24550480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.
    Selcho M; Mühlbauer B; Hensgen R; Shiga S; Wegener C; Yasuyama K
    J Comp Neurol; 2018 Jun; 526(8):1307-1328. PubMed ID: 29427506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons.
    Hartenstein V; Takashima S; Hartenstein P; Asanad S; Asanad K
    Dev Biol; 2017 Nov; 431(1):36-47. PubMed ID: 28751238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior.
    Nässel DR; Zandawala M
    Prog Neurobiol; 2019 Aug; 179():101607. PubMed ID: 30905728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system.
    Gontang AC; Hwa JJ; Mast JD; Schwabe T; Clandinin TR
    Development; 2011 Nov; 138(22):4899-909. PubMed ID: 22007130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.