These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20045670)

  • 1. In-gel protein phosphatase assay using fluorogenic substrates.
    Kameshita I; Baba H; Umeda Y; Sueyoshi N
    Anal Biochem; 2010 May; 400(1):118-22. PubMed ID: 20045670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-gel phosphatase assay using fluorogenic and radioactive substrates.
    Kameshita I
    Curr Protoc Protein Sci; 2011 Aug; Chapter 13():Unit13.12. PubMed ID: 21842466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-gel phosphatase assay using non-denaturing two-dimensional electrophoresis.
    Baba H; Masuda Y; Sueyoshi N; Kameshita I
    J Biochem; 2012 Dec; 152(6):557-63. PubMed ID: 22992841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Gel Protein Phosphatase Assay Using Fluorogenic Substrates.
    Kameshita I; Sueyoshi N; Ishida A
    Methods Mol Biol; 2018; 1853():165-172. PubMed ID: 30097942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of protein phosphatase activities in sodium dodecyl sulfate-polyacrylamide gel using peptide substrates.
    Kameshita I; Ishida A; Okuno S; Fujisawa H
    Anal Biochem; 1997 Feb; 245(2):149-53. PubMed ID: 9056202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases.
    Gee KR; Sun WC; Bhalgat MK; Upson RH; Klaubert DH; Latham KA; Haugland RP
    Anal Biochem; 1999 Aug; 273(1):41-8. PubMed ID: 10452797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases.
    Welte S; Baringhaus KH; Schmider W; Müller G; Petry S; Tennagels N
    Anal Biochem; 2005 Mar; 338(1):32-8. PubMed ID: 15707933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and activation of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) by Ca2+/calmodulin-dependent protein kinase I (CaMKI).
    Onouchi T; Sueyoshi N; Ishida A; Kameshita I
    Biochem Biophys Res Commun; 2012 Jun; 422(4):703-9. PubMed ID: 22627141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of the Ca(2+)/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N).
    Sueyoshi N; Takao T; Nimura T; Sugiyama Y; Numano T; Shigeri Y; Taniguchi T; Kameshita I; Ishida A
    Biochem Biophys Res Commun; 2007 Nov; 363(3):715-21. PubMed ID: 17897624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues.
    Burridge K; Nelson A
    Anal Biochem; 1995 Nov; 232(1):56-64. PubMed ID: 8600832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities.
    Yoshimura Y; Sogawa Y; Yamauchi T
    FEBS Lett; 1999 Mar; 446(2-3):239-42. PubMed ID: 10100849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dephosphorylation of nNOS at Ser(847) by protein phosphatase 2A.
    Komeima K; Watanabe Y
    FEBS Lett; 2001 May; 497(1):65-6. PubMed ID: 11376664
    [No Abstract]   [Full Text] [Related]  

  • 13. Renaturation of calcium/calmodulin-dependent protein kinase activity after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels to membranes.
    Shackelford DA; Zivin JA
    Anal Biochem; 1993 May; 211(1):131-8. PubMed ID: 8391760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorogenic peptide substrates for serine and threonine phosphatases.
    Xue F; Seto CT
    Org Lett; 2010 May; 12(9):1936-9. PubMed ID: 20359238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics study on recombinant alkaline phosphatase and correlation with the generated fluorescent signal.
    Susini V; Rossi VL; Sanesi A; Drazek L
    J Immunoassay Immunochem; 2018; 39(1):108-118. PubMed ID: 29244613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of protein phosphatase 2C in rat parotid acinar cells: two forms of Mg(2+)-activated histone phosphatase and phosphorylation by cAMP-dependent protein kinase.
    Yokoyama N; Kobayashi T; Tamura S; Sugiya H
    Arch Biochem Biophys; 1996 Jul; 331(1):1-8. PubMed ID: 8660676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of fluorescence-based selective assays for serine/threonine and tyrosine phosphatases.
    Pastula C; Johnson I; Beechem JM; Patton WF
    Comb Chem High Throughput Screen; 2003 Jun; 6(4):341-6. PubMed ID: 12769677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of CaMKP-N, nuclear calmodulin-dependent protein kinase phosphatase.
    Takeuchi M; Ishida A; Kameshita I; Kitani T; Okuno S; Fujisawa H
    J Biochem; 2001 Dec; 130(6):833-40. PubMed ID: 11726284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions and dysfunctions of Ca
    Ishida A; Sueyoshi N; Kameshita I
    Arch Biochem Biophys; 2018 Feb; 640():83-92. PubMed ID: 29317228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate analysis of Arabidopsis PP2C-type protein phosphatases.
    Umbrasaite J; Schweighofer A; Meskiene I
    Methods Mol Biol; 2011; 779():149-61. PubMed ID: 21837565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.