BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 20045974)

  • 1. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers.
    Sato M; Toyazaki H; Yoshioka Y; Yokoi N; Yamasaki T
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.
    Mukai D; Matsuda N; Yoshioka Y; Sato M; Yamasaki T
    J Nat Med; 2008 Apr; 62(2):155-9. PubMed ID: 18404315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphenols from peanut skins and their free radical-scavenging effects.
    Lou H; Yuan H; Ma B; Ren D; Ji M; Oka S
    Phytochemistry; 2004 Aug; 65(16):2391-9. PubMed ID: 15381013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical scavenging activity of tea catechins and their related compounds.
    Nanjo F; Mori M; Goto K; Hara Y
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1621-3. PubMed ID: 10610125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate.
    Li Y; Matsuo Y; Saito Y; Tanaka T
    Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct scavenging of nitric oxide and superoxide by green tea.
    Nakagawa T; Yokozawa T
    Food Chem Toxicol; 2002 Dec; 40(12):1745-50. PubMed ID: 12419687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals.
    Sawai Y; Moon JH; Sakata K; Watanabe N
    J Agric Food Chem; 2005 May; 53(9):3598-604. PubMed ID: 15853407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts.
    Gramza-Michałowska A; Sidor A; Reguła J; Kulczyński B
    Acta Sci Pol Technol Aliment; 2015; 14(4):331-341. PubMed ID: 28068039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.
    Nakai M; Fukui Y; Asami S; Toyoda-Ono Y; Iwashita T; Shibata H; Mitsunaga T; Hashimoto F; Kiso Y
    J Agric Food Chem; 2005 Jun; 53(11):4593-8. PubMed ID: 15913331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of far-infrared irradiation on catechins and nitrite scavenging activity of green tea.
    Lee SC; Kim SY; Jeong SM; Park JH
    J Agric Food Chem; 2006 Jan; 54(2):399-403. PubMed ID: 16417296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel long-chain acyl-derivative of epigallocatechin-3-O-gallate prepared and purified from green tea polyphenols.
    Chen P; Tan Y; Sun D; Zheng XM
    J Zhejiang Univ Sci; 2003; 4(6):714-8. PubMed ID: 14566988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
    Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF
    Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tea enhances insulin activity.
    Anderson RA; Polansky MM
    J Agric Food Chem; 2002 Nov; 50(24):7182-6. PubMed ID: 12428980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase.
    Abe I; Seki T; Umehara K; Miyase T; Noguchi H; Sakakibara J; Ono T
    Biochem Biophys Res Commun; 2000 Feb; 268(3):767-71. PubMed ID: 10679280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Green Tea Catechin ECG and Its Synthesized Fluorinated Analogue on Prostate Cancer Cells and Stimulated Immunocompetent Cells.
    Stadlbauer S; Steinborn C; Klemd A; Hattori F; Ohmori K; Suzuki K; Huber R; Wolf P; Gründemann C
    Planta Med; 2018 Jul; 84(11):813-819. PubMed ID: 29466808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the nutrient and chemical contents of traditional Korean Chungtaejeon and green teas.
    Park YS; Lee MK; Heo BG; Ham KS; Kang SG; Cho JY; Gorinstein S
    Plant Foods Hum Nutr; 2010 Jun; 65(2):186-91. PubMed ID: 20490689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.
    Bicker J; Petereit F; Hensel A
    Fitoterapia; 2009 Dec; 80(8):483-95. PubMed ID: 19695312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium Porphyromonas gingivalis.
    Sakanaka S; Okada Y
    J Agric Food Chem; 2004 Mar; 52(6):1688-92. PubMed ID: 15030231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis.
    Sakanaka S; Aizawa M; Kim M; Yamamoto T
    Biosci Biotechnol Biochem; 1996 May; 60(5):745-9. PubMed ID: 8704303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy.
    Azman NA; Peiró S; Fajarí L; Julià L; Almajano MP
    J Agric Food Chem; 2014 Jun; 62(25):5743-8. PubMed ID: 24885813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.