BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 20046100)

  • 1. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks.
    Nakamura AJ; Rao VA; Pommier Y; Bonner WM
    Cell Cycle; 2010 Jan; 9(2):389-97. PubMed ID: 20046100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK.
    Meyer B; Voss KO; Tobias F; Jakob B; Durante M; Taucher-Scholz G
    Nucleic Acids Res; 2013 Jul; 41(12):6109-18. PubMed ID: 23620287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair.
    Moon SH; Lin L; Zhang X; Nguyen TA; Darlington Y; Waldman AS; Lu X; Donehower LA
    J Biol Chem; 2010 Apr; 285(17):12935-47. PubMed ID: 20118229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair.
    Noon AT; Shibata A; Rief N; Löbrich M; Stewart GS; Jeggo PA; Goodarzi AA
    Nat Cell Biol; 2010 Feb; 12(2):177-84. PubMed ID: 20081839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dephosphorylation of γ-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control.
    Moon SH; Nguyen TA; Darlington Y; Lu X; Donehower LA
    Cell Cycle; 2010 Jun; 9(11):2092-6. PubMed ID: 20495376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA damage signaling in response to double-strand breaks during mitosis.
    Giunta S; Belotserkovskaya R; Jackson SP
    J Cell Biol; 2010 Jul; 190(2):197-207. PubMed ID: 20660628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci.
    Suchánková J; Kozubek S; Legartová S; Sehnalová P; Küntziger T; Bártová E
    Biol Cell; 2015 Dec; 107(12):440-54. PubMed ID: 26482424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NFBD1, like 53BP1, is an early and redundant transducer mediating Chk2 phosphorylation in response to DNA damage.
    Peng A; Chen PL
    J Biol Chem; 2003 Mar; 278(11):8873-6. PubMed ID: 12551934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleolin participates in DNA double-strand break-induced damage response through MDC1-dependent pathway.
    Kobayashi J; Fujimoto H; Sato J; Hayashi I; Burma S; Matsuura S; Chen DJ; Komatsu K
    PLoS One; 2012; 7(11):e49245. PubMed ID: 23145133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response.
    Kleiner RE; Verma P; Molloy KR; Chait BT; Kapoor TM
    Nat Chem Biol; 2015 Oct; 11(10):807-14. PubMed ID: 26344695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.
    Wakasugi M; Sasaki T; Matsumoto M; Nagaoka M; Inoue K; Inobe M; Horibata K; Tanaka K; Matsunaga T
    J Biol Chem; 2014 Oct; 289(41):28730-7. PubMed ID: 25164823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of proteins to DNA double-strand breaks: MDC1 directly recruits RAP80.
    Strauss C; Goldberg M
    Cell Cycle; 2011 Sep; 10(17):2850-7. PubMed ID: 21857162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks.
    Harding SM; Bristow RG
    Cell Cycle; 2012 Apr; 11(7):1432-44. PubMed ID: 22421153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes.
    Furuta T; Takemura H; Liao ZY; Aune GJ; Redon C; Sedelnikova OA; Pilch DR; Rogakou EP; Celeste A; Chen HT; Nussenzweig A; Aladjem MI; Bonner WM; Pommier Y
    J Biol Chem; 2003 May; 278(22):20303-12. PubMed ID: 12660252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDC1 is a mediator of the mammalian DNA damage checkpoint.
    Stewart GS; Wang B; Bignell CR; Taylor AM; Elledge SJ
    Nature; 2003 Feb; 421(6926):961-6. PubMed ID: 12607005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage.
    Eliezer Y; Argaman L; Rhie A; Doherty AJ; Goldberg M
    J Biol Chem; 2009 Jan; 284(1):426-435. PubMed ID: 18986980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance.
    Salguero I; Belotserkovskaya R; Coates J; Sczaniecka-Clift M; Demir M; Jhujh S; Wilson MD; Jackson SP
    Nat Commun; 2019 Nov; 10(1):5191. PubMed ID: 31729360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention.
    Lukas C; Melander F; Stucki M; Falck J; Bekker-Jensen S; Goldberg M; Lerenthal Y; Jackson SP; Bartek J; Lukas J
    EMBO J; 2004 Jul; 23(13):2674-83. PubMed ID: 15201865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX.
    Yuan J; Chen J
    J Biol Chem; 2010 Jan; 285(2):1097-104. PubMed ID: 19910469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.