These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 20046100)
1. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Nakamura AJ; Rao VA; Pommier Y; Bonner WM Cell Cycle; 2010 Jan; 9(2):389-97. PubMed ID: 20046100 [TBL] [Abstract][Full Text] [Related]
2. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Meyer B; Voss KO; Tobias F; Jakob B; Durante M; Taucher-Scholz G Nucleic Acids Res; 2013 Jul; 41(12):6109-18. PubMed ID: 23620287 [TBL] [Abstract][Full Text] [Related]
3. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. Moon SH; Lin L; Zhang X; Nguyen TA; Darlington Y; Waldman AS; Lu X; Donehower LA J Biol Chem; 2010 Apr; 285(17):12935-47. PubMed ID: 20118229 [TBL] [Abstract][Full Text] [Related]
4. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Noon AT; Shibata A; Rief N; Löbrich M; Stewart GS; Jeggo PA; Goodarzi AA Nat Cell Biol; 2010 Feb; 12(2):177-84. PubMed ID: 20081839 [TBL] [Abstract][Full Text] [Related]
5. Dephosphorylation of γ-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control. Moon SH; Nguyen TA; Darlington Y; Lu X; Donehower LA Cell Cycle; 2010 Jun; 9(11):2092-6. PubMed ID: 20495376 [TBL] [Abstract][Full Text] [Related]
6. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci. Suchánková J; Kozubek S; Legartová S; Sehnalová P; Küntziger T; Bártová E Biol Cell; 2015 Dec; 107(12):440-54. PubMed ID: 26482424 [TBL] [Abstract][Full Text] [Related]
7. DNA damage signaling in response to double-strand breaks during mitosis. Giunta S; Belotserkovskaya R; Jackson SP J Cell Biol; 2010 Jul; 190(2):197-207. PubMed ID: 20660628 [TBL] [Abstract][Full Text] [Related]
8. NFBD1, like 53BP1, is an early and redundant transducer mediating Chk2 phosphorylation in response to DNA damage. Peng A; Chen PL J Biol Chem; 2003 Mar; 278(11):8873-6. PubMed ID: 12551934 [TBL] [Abstract][Full Text] [Related]
9. Nucleolin participates in DNA double-strand break-induced damage response through MDC1-dependent pathway. Kobayashi J; Fujimoto H; Sato J; Hayashi I; Burma S; Matsuura S; Chen DJ; Komatsu K PLoS One; 2012; 7(11):e49245. PubMed ID: 23145133 [TBL] [Abstract][Full Text] [Related]
10. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Kleiner RE; Verma P; Molloy KR; Chait BT; Kapoor TM Nat Chem Biol; 2015 Oct; 11(10):807-14. PubMed ID: 26344695 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells. Wakasugi M; Sasaki T; Matsumoto M; Nagaoka M; Inoue K; Inobe M; Horibata K; Tanaka K; Matsunaga T J Biol Chem; 2014 Oct; 289(41):28730-7. PubMed ID: 25164823 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of proteins to DNA double-strand breaks: MDC1 directly recruits RAP80. Strauss C; Goldberg M Cell Cycle; 2011 Sep; 10(17):2850-7. PubMed ID: 21857162 [TBL] [Abstract][Full Text] [Related]
13. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Harding SM; Bristow RG Cell Cycle; 2012 Apr; 11(7):1432-44. PubMed ID: 22421153 [TBL] [Abstract][Full Text] [Related]
14. MDC1 is a mediator of the mammalian DNA damage checkpoint. Stewart GS; Wang B; Bignell CR; Taylor AM; Elledge SJ Nature; 2003 Feb; 421(6926):961-6. PubMed ID: 12607005 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. Furuta T; Takemura H; Liao ZY; Aune GJ; Redon C; Sedelnikova OA; Pilch DR; Rogakou EP; Celeste A; Chen HT; Nussenzweig A; Aladjem MI; Bonner WM; Pommier Y J Biol Chem; 2003 May; 278(22):20303-12. PubMed ID: 12660252 [TBL] [Abstract][Full Text] [Related]
16. The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage. Eliezer Y; Argaman L; Rhie A; Doherty AJ; Goldberg M J Biol Chem; 2009 Jan; 284(1):426-435. PubMed ID: 18986980 [TBL] [Abstract][Full Text] [Related]
17. MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance. Salguero I; Belotserkovskaya R; Coates J; Sczaniecka-Clift M; Demir M; Jhujh S; Wilson MD; Jackson SP Nat Commun; 2019 Nov; 10(1):5191. PubMed ID: 31729360 [TBL] [Abstract][Full Text] [Related]
18. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. Lukas C; Melander F; Stucki M; Falck J; Bekker-Jensen S; Goldberg M; Lerenthal Y; Jackson SP; Bartek J; Lukas J EMBO J; 2004 Jul; 23(13):2674-83. PubMed ID: 15201865 [TBL] [Abstract][Full Text] [Related]
19. Targeting protein for xenopus kinesin-like protein 2 (TPX2) regulates γ-histone 2AX (γ-H2AX) levels upon ionizing radiation. Neumayer G; Helfricht A; Shim SY; Le HT; Lundin C; Belzil C; Chansard M; Yu Y; Lees-Miller SP; Gruss OJ; van Attikum H; Helleday T; Nguyen MD J Biol Chem; 2012 Dec; 287(50):42206-22. PubMed ID: 23045526 [TBL] [Abstract][Full Text] [Related]
20. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. Goodarzi AA; Jeggo P; Lobrich M DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]