These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 20046888)
1. Absorption, Conjugation and Efflux of the Flavonoids, Kaempferol and Galangin, Using the Intestinal CACO-2/TC7 Cell Model. Barrington R; Williamson G; Bennett RN; Davis BD; Brodbelt JS; Kroon PA J Funct Foods; 2009 Jan; 1(1):74-87. PubMed ID: 20046888 [TBL] [Abstract][Full Text] [Related]
2. MK571 inhibits phase-2 conjugation of flavonols by Caco-2/TC7 cells, but does not specifically inhibit their apical efflux. Barrington RD; Needs PW; Williamson G; Kroon PA Biochem Pharmacol; 2015 Jun; 95(3):193-200. PubMed ID: 25801004 [TBL] [Abstract][Full Text] [Related]
3. Effect of edible oils on quercetin, kaempferol and galangin transport and conjugation in the intestinal Caco-2/HT29-MTX co-culture model. Jailani F; Williamson G Food Funct; 2014 Apr; 5(4):653-62. PubMed ID: 24525490 [TBL] [Abstract][Full Text] [Related]
4. Transport of trans-tiliroside (kaempferol-3-β-D-(6"-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine. Luo Z; Morgan MR; Day AJ Xenobiotica; 2015; 45(8):722-30. PubMed ID: 25761590 [TBL] [Abstract][Full Text] [Related]
5. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Brand W; van der Wel PA; Rein MJ; Barron D; Williamson G; van Bladeren PJ; Rietjens IM Drug Metab Dispos; 2008 Sep; 36(9):1794-802. PubMed ID: 18515333 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters. Zheng L; Zhu L; Zhao M; Shi J; Li Y; Yu J; Jiang H; Wu J; Tong Y; Liu Y; Hu M; Lu L; Liu Z AAPS J; 2016 Sep; 18(5):1289-1299. PubMed ID: 27393480 [TBL] [Abstract][Full Text] [Related]
7. Metabolites of galangin by 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible cytochrome P450 1A1 in human intestinal epithelial Caco-2 cells and their antagonistic activity toward aryl hydrocarbon receptor. Hamada M; Satsu H; Ashida H; Sugita-Konishi Y; Shimizu M J Agric Food Chem; 2010 Jul; 58(13):8111-8. PubMed ID: 20550209 [TBL] [Abstract][Full Text] [Related]
8. Interplay of Efflux Transporters with Glucuronidation and Its Impact on Subcellular Aglycone and Glucuronide Disposition: A Case Study with Kaempferol. Li Y; Lu L; Wang L; Qu W; Liu W; Xie Y; Zheng H; Wang Y; Qi X; Hu M; Zhu L; Liu Z Mol Pharm; 2018 Dec; 15(12):5602-5614. PubMed ID: 30376625 [TBL] [Abstract][Full Text] [Related]
9. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers. Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339 [TBL] [Abstract][Full Text] [Related]
10. Glucurono- and sulfo-conjugation of kaempferol in rat liver subcellular preparations and cultured hepatocytes. Yodogawa S; Arakawa T; Sugihara N; Furuno K Biol Pharm Bull; 2003 Aug; 26(8):1120-4. PubMed ID: 12913262 [TBL] [Abstract][Full Text] [Related]
11. Efflux of baicalin, a flavone glucuronide of Scutellariae Radix, on Caco-2 cells through multidrug resistance-associated protein 2. Akao T; Hanada M; Sakashita Y; Sato K; Morita M; Imanaka T J Pharm Pharmacol; 2007 Jan; 59(1):87-93. PubMed ID: 17227625 [TBL] [Abstract][Full Text] [Related]
12. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids. Murota K; Shimizu S; Miyamoto S; Izumi T; Obata A; Kikuchi M; Terao J J Nutr; 2002 Jul; 132(7):1956-61. PubMed ID: 12097676 [TBL] [Abstract][Full Text] [Related]
13. The effect of co-administered flavonoids on the metabolism of hesperetin and the disposition of its metabolites in Caco-2 cell monolayers. Brand W; Padilla B; van Bladeren PJ; Williamson G; Rietjens IM Mol Nutr Food Res; 2010 Jun; 54(6):851-60. PubMed ID: 20112299 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory effect of flavonoids on sulfo- and glucurono-conjugation of acetaminophen in rat cultured hepatocytes and liver subcellular preparations. Morimitsu Y; Sugihara N; Furuno K Biol Pharm Bull; 2004 May; 27(5):714-7. PubMed ID: 15133252 [TBL] [Abstract][Full Text] [Related]
15. Flavonoids as Human Intestinal α-Glucosidase Inhibitors. Barber E; Houghton MJ; Williamson G Foods; 2021 Aug; 10(8):. PubMed ID: 34441720 [TBL] [Abstract][Full Text] [Related]
16. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Serra H; Mendes T; Bronze MR; Simplício AL Bioorg Med Chem; 2008 Apr; 16(7):4009-18. PubMed ID: 18249545 [TBL] [Abstract][Full Text] [Related]
17. Caco-2 cell monolayers as a tool to study simultaneous phase II metabolism and metabolite efflux of indomethacin, paracetamol and 1-naphthol. Siissalo S; Laine L; Tolonen A; Kaukonen AM; Finel M; Hirvonen J Int J Pharm; 2010 Jan; 383(1-2):24-9. PubMed ID: 19733645 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic study on the intestinal absorption and disposition of baicalein. Zhang L; Lin G; Kovács B; Jani M; Krajcsi P; Zuo Z Eur J Pharm Sci; 2007 Jul; 31(3-4):221-31. PubMed ID: 17507208 [TBL] [Abstract][Full Text] [Related]
19. Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in Caco-2 cell model. Sanchez-Bridge B; Lévèques A; Li H; Bertschy E; Patin A; Actis-Goretta L Drug Metab Dispos; 2015 Jan; 43(1):9-16. PubMed ID: 25315342 [TBL] [Abstract][Full Text] [Related]
20. Flavone potently stimulates an apical transporter for flavonoids in human intestinal Caco-2 cells. Lies B; Martens S; Schmidt S; Boll M; Wenzel U Mol Nutr Food Res; 2012 Nov; 56(11):1627-35. PubMed ID: 22965487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]