These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20046995)

  • 21. Computational study of the interaction between TIBO inhibitors and Y181 (C181), K101, and Y188 amino acids.
    Freitas RF; Galembeck SE
    J Phys Chem B; 2006 Oct; 110(42):21287-98. PubMed ID: 17048958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular modeling calculations of HIV-1 reverse transcriptase nonnucleoside inhibitors: correlation of binding energy with biological activity for novel 2-aryl-substituted benzimidazole analogues.
    Kroeger Smith MB; Hose BM; Hawkins A; Lipchock J; Farnsworth DW; Rizzo RC; Tirado-Rives J; Arnold E; Zhang W; Hughes SH; Jorgensen WL; Michejda CJ; Smith RH
    J Med Chem; 2003 May; 46(10):1940-7. PubMed ID: 12723956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charges for Large Scale Binding Free Energy Calculations with the Linear Interaction Energy Method.
    Wallin G; Nervall M; Carlsson J; Åqvist J
    J Chem Theory Comput; 2009 Feb; 5(2):380-95. PubMed ID: 26610112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data mining using template-based molecular docking on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1RT inhibitors.
    Sapre NS; Gupta S; Pancholi N; Sapre N
    J Mol Model; 2008 Nov; 14(11):1009-21. PubMed ID: 18642033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design.
    Ren J; Esnouf R; Hopkins A; Ross C; Jones Y; Stammers D; Stuart D
    Structure; 1995 Sep; 3(9):915-26. PubMed ID: 8535785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational analysis of the HIV-1 virus reverse transcriptase nonnucleoside inhibitors: TIBO and nevirapine.
    Abrahão-Júnior O; Nascimento PG; Galembeck SE
    J Comput Chem; 2001 Nov; 22(15):1817-1829. PubMed ID: 12116413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations.
    Dodda LS; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2017 Apr; 121(15):3864-3870. PubMed ID: 28224794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An optimized charge penetration model for use with the AMOEBA force field.
    Rackers JA; Wang Q; Liu C; Piquemal JP; Ren P; Ponder JW
    Phys Chem Chem Phys; 2016 Dec; 19(1):276-291. PubMed ID: 27901142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of atomic partial charge schemes for polarisation and charge transfer effects in ionic liquids.
    Rigby J; Izgorodina EI
    Phys Chem Chem Phys; 2013 Feb; 15(5):1632-46. PubMed ID: 23247883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QUBEKit: Automating the Derivation of Force Field Parameters from Quantum Mechanics.
    Horton JT; Allen AEA; Dodda LS; Cole DJ
    J Chem Inf Model; 2019 Apr; 59(4):1366-1381. PubMed ID: 30742438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and test of highly accurate endpoint free energy methods. 1: Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method.
    Sun Y; He X; Hou T; Cai L; Man VH; Wang J
    J Comput Chem; 2023 May; 44(14):1334-1346. PubMed ID: 36807356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
    Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL
    J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fast and high-quality charge model for the next generation general AMBER force field.
    He X; Man VH; Yang W; Lee TS; Wang J
    J Chem Phys; 2020 Sep; 153(11):114502. PubMed ID: 32962378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method.
    Smith RH; Jorgensen WL; Tirado-Rives J; Lamb ML; Janssen PA; Michejda CJ; Kroeger Smith MB
    J Med Chem; 1998 Dec; 41(26):5272-86. PubMed ID: 9857095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-QSAR CoMFA of a series of DABO derivatives as HIV-1 reverse transcriptase non-nucleoside inhibitors.
    de Brito MA; Rodrigues CR; Cirino JJ; de Alencastro RB; Castro HC; Albuquerque MG
    J Chem Inf Model; 2008 Aug; 48(8):1706-15. PubMed ID: 18671385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of binding affinities for HEPT and nevirapine analogues with HIV-1 reverse transcriptase via Monte Carlo simulations.
    Rizzo RC; Tirado-Rives J; Jorgensen WL
    J Med Chem; 2001 Jan; 44(2):145-54. PubMed ID: 11170624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based design, synthesis, and biological evaluation of conformationally restricted novel 2-alkylthio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones as non-nucleoside inhibitors of HIV-1 reverse transcriptase.
    Mai A; Sbardella G; Artico M; Ragno R; Massa S; Novellino E; Greco G; Lavecchia A; Musiu C; La Colla M; Murgioni C; La Colla P; Loddo R
    J Med Chem; 2001 Aug; 44(16):2544-54. PubMed ID: 11472208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.