BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20047303)

  • 1. Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
    Orban T; Gupta S; Palczewski K; Chance MR
    Biochemistry; 2010 Feb; 49(5):827-34. PubMed ID: 20047303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of structural waters and their role in structural dynamics of rhodopsin activation.
    Wang L; Chance MR
    Methods Mol Biol; 2015; 1271():97-111. PubMed ID: 25697519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
    Angel TE; Gupta S; Jastrzebska B; Palczewski K; Chance MR
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14367-72. PubMed ID: 19706523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of bulk water in hydrolysis of the rhodopsin chromophore.
    Jastrzebska B; Palczewski K; Golczak M
    J Biol Chem; 2011 May; 286(21):18930-7. PubMed ID: 21460218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
    Angel TE; Chance MR; Palczewski K
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8555-60. PubMed ID: 19433801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives.
    Bavro VN; Gupta S; Ralston C
    Biochem Soc Trans; 2015 Oct; 43(5):983-94. PubMed ID: 26517913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using X-ray Footprinting and Mass Spectrometry to Study the Structure and Function of Membrane Proteins.
    Gupta S
    Protein Pept Lett; 2019; 26(1):44-54. PubMed ID: 30484402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.
    Yuan S; Filipek S; Palczewski K; Vogel H
    Nat Commun; 2014 Sep; 5():4733. PubMed ID: 25203160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes.
    Takamoto K; Chance MR
    Annu Rev Biophys Biomol Struct; 2006; 35():251-76. PubMed ID: 16689636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry.
    Gupta S; D'Mello R; Chance MR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14882-7. PubMed ID: 22927377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting.
    Watson C; Janik I; Zhuang T; Charvátová O; Woods RJ; Sharp JS
    Anal Chem; 2009 Apr; 81(7):2496-505. PubMed ID: 19265387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting.
    Zhu Y; Guo T; Park JE; Li X; Meng W; Datta A; Bern M; Lim SK; Sze SK
    Mol Cell Proteomics; 2009 Aug; 8(8):1999-2010. PubMed ID: 19473960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into G-protein-coupled receptor activation.
    Weis WI; Kobilka BK
    Curr Opin Struct Biol; 2008 Dec; 18(6):734-40. PubMed ID: 18957321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment.
    Jain R; Dhillon NS; Farquhar ER; Wang B; Li X; Kiselar J; Chance MR
    Anal Chem; 2022 Jul; 94(27):9819-9825. PubMed ID: 35763792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buried water molecules in helical transmembrane proteins.
    Renthal R
    Protein Sci; 2008 Feb; 17(2):293-8. PubMed ID: 18096637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry.
    Shi L; Gross ML
    Protein Pept Lett; 2019; 26(1):27-34. PubMed ID: 30484399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs.
    Han DS; Wang SX; Weinstein H
    Biochemistry; 2008 Jul; 47(28):7317-21. PubMed ID: 18558776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.
    Woods KN; Pfeffer J; Dutta A; Klein-Seetharaman J
    Sci Rep; 2016 Nov; 6():37290. PubMed ID: 27849063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.