BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20047639)

  • 1. Upper gastrointestinal motility changes following spinal cord injury.
    Gondim FA; de Oliveira GR; Thomas FP
    Neurogastroenterol Motil; 2010 Jan; 22(1):2-6. PubMed ID: 20047639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms involved in the delay of gastric emptying and gastrointestinal transit of liquid after thoracic spinal cord transection in awake rats.
    Gondim FA; Rodrigues CL; da Graça JR; Camurça FD; de Alencar HM; dos Santos AA; Rola FH
    Auton Neurosci; 2001 Feb; 87(1):52-8. PubMed ID: 11280307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of spinal cord stimulation in a rodent model of post-operative ileus.
    Maher J; Johnson AC; Newman R; Mendez S; Hoffmann TJ; Foreman R; Greenwood-Van Meerveld B
    Neurogastroenterol Motil; 2009 Jun; 21(6):672-7, e33-4. PubMed ID: 19175749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord transection modifies ileal fluid and electrolyte transport in rats.
    Medeiros BA; dos Santos CL; Palheta RC; de Queiroz DA; da Graça JR; dos Santos AA; Rola FH; Lima AA; Gondim Fde A
    Auton Neurosci; 2008 May; 139(1-2):24-9. PubMed ID: 18230418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastric and small intestinal dysfunction in spinal cord injury patients.
    Fynne L; Worsøe J; Gregersen T; Schlageter V; Laurberg S; Krogh K
    Acta Neurol Scand; 2012 Feb; 125(2):123-8. PubMed ID: 21428967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-course of recovery of gastric emptying and motility in rats with experimental spinal cord injury.
    Qualls-Creekmore E; Tong M; Holmes GM
    Neurogastroenterol Motil; 2010 Jan; 22(1):62-9, e27-8. PubMed ID: 19566592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.
    Wrathall JR; Teng YD; Marriott R
    Exp Neurol; 1997 Jun; 145(2 Pt 1):565-73. PubMed ID: 9217092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metoclopramide-induced normalization of impaired gastric emptying in spinal cord injury.
    Segal JL; Milne N; Brunnemann SR; Lyons KP
    Am J Gastroenterol; 1987 Nov; 82(11):1143-8. PubMed ID: 3673993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper and lower gastrointestinal motor and sensory dysfunction after human spinal cord injury.
    Enck P; Greving I; Klosterhalfen S; Wietek B
    Prog Brain Res; 2006; 152():373-84. PubMed ID: 16198714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of traumatic spinal cord transection on human upper gastrointestinal motility and gastric emptying.
    Fealey RD; Szurszewski JH; Merritt JL; DiMagno EP
    Gastroenterology; 1984 Jul; 87(1):69-75. PubMed ID: 6724276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model.
    Suzuki S; Ramos EJ; Goncalves CG; Chen C; Meguid MM
    Surgery; 2005 Aug; 138(2):283-90. PubMed ID: 16153438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased gastric emptying and gastrointestinal and intestinal transits of liquid after complete spinal cord transection in awake rats.
    Gondim FA; da-Graça JR; de-Oliveira GR; Rêgo MC; Gondim RB; Rola FH
    Braz J Med Biol Res; 1998 Dec; 31(12):1605-10. PubMed ID: 9951559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastric emptying is impaired in patients with spinal cord injury.
    Segal JL; Milne N; Brunnemann SR
    Am J Gastroenterol; 1995 Mar; 90(3):466-70. PubMed ID: 7872287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic potential of spinal cord stimulation for gastrointestinal motility disorders: a preliminary rodent study.
    Song GQ; Sun Y; Foreman RD; Chen JD
    Neurogastroenterol Motil; 2014 Mar; 26(3):377-84. PubMed ID: 24341686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia.
    Laird AS; Carrive P; Waite PM
    J Physiol; 2006 Dec; 577(Pt 2):539-48. PubMed ID: 16973703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction.
    Furlan JC; Fehlings MG
    Spine (Phila Pa 1976); 2009 Mar; 34(5):501-11. PubMed ID: 19212273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat.
    Rabchevsky AG; Fugaccia I; Turner AF; Blades DA; Mattson MP; Scheff SW
    Exp Neurol; 2000 Aug; 164(2):280-91. PubMed ID: 10915567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired sperm function after spinal cord injury in the rat is associated with altered cyclic adenosine monophosphate signaling.
    Wang S; Wang G; Barton BE; Murphy TF; Huang HF
    J Androl; 2005; 26(5):592-600. PubMed ID: 16088035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effect of moderate epidural hypothermia after spinal cord injury in rats.
    Ha KY; Kim YH
    Spine (Phila Pa 1976); 2008 Sep; 33(19):2059-65. PubMed ID: 18758361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury.
    Sharma HS
    Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.