BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20047944)

  • 1. Prediction and parametric analysis of thermal profiles within heated human skin using the boundary element method.
    Ng EY; Tan HM; Ooi EH
    Philos Trans A Math Phys Eng Sci; 2010 Feb; 368(1912):655-78. PubMed ID: 20047944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundary element method with bioheat equation for skin burn injury.
    Ng EY; Tan HM; Ooi EH
    Burns; 2009 Nov; 35(7):987-97. PubMed ID: 19427127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient bioheat simulation of the laser-tissue interaction in human skin using hybrid finite element formulation.
    Zhang ZW; Wang H; Qin QH
    Mol Cell Biomech; 2012 Mar; 9(1):31-53. PubMed ID: 22428360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):171-83. PubMed ID: 12137284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.
    Shih TC; Yuan P; Lin WL; Kou HS
    Med Eng Phys; 2007 Nov; 29(9):946-53. PubMed ID: 17137825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann method for solving the bioheat equation.
    Zhang H
    Phys Med Biol; 2008 Feb; 53(3):N15-23. PubMed ID: 18199898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual reciprocity boundary element method for solving thermal wave model of bioheat transfer.
    Liu J; Lu W
    Space Med Med Eng (Beijing); 1997 Dec; 10(6):391-5. PubMed ID: 11540432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.
    Zhang R; Verkruysse W; Aguilar G; Nelson JS
    Phys Med Biol; 2005 Sep; 50(17):4075-86. PubMed ID: 16177531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A basic step toward understanding skin surface temperature distributions caused by internal heat sources.
    Wu Z; Liu HH; Lebanowski L; Liu Z; Hor PH
    Phys Med Biol; 2007 Sep; 52(17):5379-92. PubMed ID: 17762093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.
    Deng ZS; Liu J
    Comput Biol Med; 2004 Sep; 34(6):495-521. PubMed ID: 15265721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin temperatures.
    Peery JT; Klute GK; Blevins JJ; Ledoux WR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):336-43. PubMed ID: 17009493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies.
    Deng ZS; Liu J
    J Biomech Eng; 2002 Dec; 124(6):638-49. PubMed ID: 12596630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical design of experiment for sensitivity analysis--application to skin burn injury prediction.
    Autrique L; Lormel C
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1279-90. PubMed ID: 18390319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The uncertainty in burn prediction as a result of variable skin parameters: an experimental evaluation of burn-protective outfits.
    Gasperin M; Juricić D
    Burns; 2009 Nov; 35(7):970-82. PubMed ID: 19446961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FEM simulation of the eye structure with bio-heat analysis.
    Ng EY; Ooi EH
    Comput Methods Programs Biomed; 2006 Jun; 82(3):268-76. PubMed ID: 16682096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.
    Jiang R; Zhou Z; Lv X; Zeng S; Huang Z; Zhou H
    Ultrasonics; 2012 Jul; 52(5):643-9. PubMed ID: 22316528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling: a numerical simulation.
    Jia W; Aguilar G; Verkruysse W; Franco W; Nelson JS
    Lasers Surg Med; 2006 Feb; 38(2):155-62. PubMed ID: 16493663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.