These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20048059)

  • 1. Automated quantification and sizing of unbranched filamentous cyanobacteria by model-based object-oriented image analysis.
    Zeder M; Van den Wyngaert S; Köster O; Felder KM; Pernthaler J
    Appl Environ Microbiol; 2010 Mar; 76(5):1615-22. PubMed ID: 20048059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACQUA: Automated Cyanobacterial Quantification Algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning.
    Gandola E; Antonioli M; Traficante A; Franceschini S; Scardi M; Congestri R
    J Microbiol Methods; 2016 May; 124():48-56. PubMed ID: 27012737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.
    Sieracki ME; Reichenbach SE; Webb KL
    Appl Environ Microbiol; 1989 Nov; 55(11):2762-72. PubMed ID: 2516431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method based on image analysis for determining cyanobacterial biomass by CLSM in stratified benthic sediments.
    Solé A; Mas J; Esteve I
    Ultramicroscopy; 2007 Aug; 107(8):669-73. PubMed ID: 17350172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
    Lojk J; Čibej U; Karlaš D; Šajn L; Pavlin M
    J Microsc; 2015 Oct; 260(1):107-16. PubMed ID: 26098834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-assisted image analysis of freshwater microalgae.
    Walker RF; Ishikawa K; Kumagai M
    J Microbiol Methods; 2002 Oct; 51(2):149-62. PubMed ID: 12133607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image processing for identification and quantification of filamentous bacteria in in situ acquired images.
    Dias PA; Dunkel T; Fajado DA; Gallegos Ede L; Denecke M; Wiedemann P; Schneider FK; Suhr H
    Biomed Eng Online; 2016 Jun; 15(1):64. PubMed ID: 27287755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments.
    Walsby AE
    New Phytol; 2005 Nov; 168(2):365-76. PubMed ID: 16219076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ.
    Schulze K; López DA; Tillich UM; Frohme M
    BMC Biotechnol; 2011 Nov; 11():118. PubMed ID: 22129198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Actin Filaments Image Analysis Framework.
    Alioscha-Perez M; Benadiba C; Goossens K; Kasas S; Dietler G; Willaert R; Sahli H
    PLoS Comput Biol; 2016 Aug; 12(8):e1005063. PubMed ID: 27551746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis.
    Daims H; Wagner M
    Appl Microbiol Biotechnol; 2007 May; 75(2):237-48. PubMed ID: 17333172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live-cell imaging of cyanobacteria.
    Yokoo R; Hood RD; Savage DF
    Photosynth Res; 2015 Oct; 126(1):33-46. PubMed ID: 25366827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpotitPy: a semi-automated tool for object-based co-localization of fluorescent labels in microscopy images.
    Akalestou-Clocher A; Kalamara V; Topalis P; Garinis GA
    BMC Bioinformatics; 2022 Oct; 23(1):439. PubMed ID: 36271369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology.
    Zeder M; Kohler E; Zeder L; Pernthaler J
    Microsc Microanal; 2011 Oct; 17(5):799-809. PubMed ID: 21910938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding.
    Alegro M; Theofilas P; Nguy A; Castruita PA; Seeley W; Heinsen H; Ushizima DM; Grinberg LT
    J Neurosci Methods; 2017 Apr; 282():20-33. PubMed ID: 28267565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image division technique in pre-acquisition analysis of information content for automated microscopy.
    Brázdilová SL; Kozubek M
    J Microsc; 2011 Jun; 242(3):279-89. PubMed ID: 21118253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive image analysis system to determine the motility and velocity of cyanobacterial filaments.
    Häder DP; Vogel K
    J Biochem Biophys Methods; 1991; 22(4):289-300. PubMed ID: 1908871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of colocalization and cross-talk based on spectral angles.
    Gavrilovic M; Wählby C
    J Microsc; 2009 Jun; 234(3):311-24. PubMed ID: 19493110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.