These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 20048986)

  • 1. Effects of a simulated high-energy space environment on the ultraviolet transmittance of optical materials between 1050 A and 3000 A.
    Heath DF; Sacher PA
    Appl Opt; 1966 Jun; 5(6):937-43. PubMed ID: 20048986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation damage effects in far-ultraviolet filters, thin films, and substrates.
    Keffer CE; Torr MR; Zukic M; Spann JF; Torr DG; Kim J
    Appl Opt; 1994 Sep; 33(25):6041-5. PubMed ID: 20936017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of simulated space radiation on selected optical materials.
    Nicoletta CA; Eubanks AG
    Appl Opt; 1972 Jun; 11(6):1365-70. PubMed ID: 20119148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films.
    Zukic M; Torr DG; Spann JF; Torr MR
    Appl Opt; 1990 Oct; 29(28):4284-92. PubMed ID: 20577378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-induced degradation of VUV transmission of LiF and MgF(2).
    Reft CS; Becher J; Kernell RL
    Appl Opt; 1980 Dec; 19(24):4156-8. PubMed ID: 20309030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photomultiplier window materials under electron irradiation: fluorescence and phosphorescence.
    Viehmann W; Eubanks AG; Pieper GF; Bredekamp JH
    Appl Opt; 1975 Sep; 14(9):2104-15. PubMed ID: 20154970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmittance of cultured crystalline quartz in the vacuum ultraviolet before and after electron irradiation.
    Hass G; Hunter WR
    Appl Opt; 1978 Aug; 17(15):2310-5. PubMed ID: 20203779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an add-on multileaf collimator for electron beam therapy.
    Gauer T; Sokoll J; Cremers F; Harmansa R; Luzzara M; Schmidt R
    Phys Med Biol; 2008 Feb; 53(4):1071-85. PubMed ID: 18263959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of electron collimator leaf shape on the build-up dose in narrow electron MLC fields.
    Vatanen T; Traneus E; Väänänen A; Lahtinen T
    Phys Med Biol; 2009 Dec; 54(23):7211-26. PubMed ID: 19920308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of radiation doses in space on the basis of current data.
    Foelsche T
    Life Sci Space Res; 1963; 1():48-94. PubMed ID: 12056428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evaluation of 6 and 18 MeV electron beams for small animal irradiation.
    Chao TC; Chen AM; Tu SJ; Tung CJ; Hong JH; Lee CC
    Phys Med Biol; 2009 Oct; 54(19):5847-60. PubMed ID: 19741277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmittance of optical materials from 0.17 micro to 3.0 micro.
    McCarthy DE
    Appl Opt; 1967 Nov; 6(11):1896-8. PubMed ID: 20062325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further studies on MgF(2)-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet.
    Canfield LR; Hass G; Waylonis JE
    Appl Opt; 1966 Jan; 5(1):45-9. PubMed ID: 20048784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo verification of electron beam energy by patient exit dose and optical density of portal films.
    Geyer P; Baus WW; Baumann M
    Strahlenther Onkol; 2004 Jan; 180(1):62-5. PubMed ID: 14704847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric verification of a Monte Carlo electron beam model for an add-on eMLC.
    Vatanen T; Traneus E; Lahtinen T
    Phys Med Biol; 2008 Jan; 53(2):391-404. PubMed ID: 18184994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of the implementation of Fermi-Eyges-Hogstrom electron beam model of the Pinnacle3 system at extended SSDs.
    Al-Ghazi M; Sehgal V; Sanford R; Chung H
    Med Dosim; 2007; 32(3):200-3. PubMed ID: 17707200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC).
    du Plessis FC; Leal A; Stathakis S; Xiong W; Ma CM
    Phys Med Biol; 2006 Apr; 51(8):2113-29. PubMed ID: 16585849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling initial electron beam parameters for Monte Carlo photon beam modelling by removing beam-modifying filters from the beam path.
    De Smedt B; Reynaert N; Flachet F; Coghe M; Thompson MG; Paelinck L; Pittomvils G; De Wagter C; De Neve W; Thierens H
    Phys Med Biol; 2005 Dec; 50(24):5935-51. PubMed ID: 16333165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a high energy particle environment on the quantum efficiency of spectrally selective photocathodes for the middle and vacuum ultraviolet.
    Heath DF; McElaney JH
    Appl Opt; 1968 Oct; 7(10):2049-52. PubMed ID: 20068933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.