These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20049597)

  • 1. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea.
    Khare E; Arora NK
    Curr Microbiol; 2010 Jul; 61(1):64-8. PubMed ID: 20049597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonistic potential of fluorescent pseudomonads and control of charcoal rot of chickpea caused by Macrophomina phaseolina.
    Kumar V; Kumar A; Kharwar RN
    J Environ Biol; 2007 Jan; 28(1):15-20. PubMed ID: 17717979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition.
    Khare E; Singh S; Maheshwari DK; Arora NK
    Curr Microbiol; 2011 May; 62(5):1548-53. PubMed ID: 21331555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions.
    Patil S; Paradeshi J; Chaudhari B
    J Basic Microbiol; 2016 Aug; 56(8):889-99. PubMed ID: 27213894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.
    Fierro-Coronado RA; Quiroz-Figueroa FR; García-Pérez LM; Ramírez-Chávez E; Molina-Torres J; Maldonado-Mendoza IE
    Can J Microbiol; 2014 Oct; 60(10):639-48. PubMed ID: 25231840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).
    Shweta B; Maheshwari DK; Dubey RC; Arora DS; Bajpai VK; Kang SC
    J Microbiol Biotechnol; 2008 Sep; 18(9):1578-83. PubMed ID: 18852515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus.
    Khare E; Arora NK
    World J Microbiol Biotechnol; 2021 Feb; 37(4):55. PubMed ID: 33615389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions.
    Tewari S; Arora NK
    Curr Microbiol; 2014 Oct; 69(4):484-94. PubMed ID: 24880775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent.
    Bano N; Musarrat J
    Curr Microbiol; 2003 May; 46(5):324-8. PubMed ID: 12732958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent.
    Minaxi ; Saxena J
    Mycopathologia; 2010 Sep; 170(3):181-93. PubMed ID: 20446042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indole-3-Acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch.
    Suzuki S; He Y; Oyaizu H
    Curr Microbiol; 2003 Aug; 47(2):138-43. PubMed ID: 14506862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically stressed cells of fluorescent pseudomonas EKi as better option for bioformulation development for management of charcoal rot caused by Macrophomina phaseolina in field conditions.
    Khare E; Arora NK
    Curr Microbiol; 2011 Jun; 62(6):1789-93. PubMed ID: 21479797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.
    Sulochana MB; Jayachandra SY; Kumar SA; Parameshwar AB; Reddy KM; Dayanand A
    Appl Biochem Biotechnol; 2014 Sep; 174(1):297-308. PubMed ID: 25062779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean.
    Simonetti E; Viso NP; Montecchia M; Zilli C; Balestrasse K; Carmona M
    Microbiol Res; 2015 Nov; 180():40-8. PubMed ID: 26505310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa.
    Hariprasad P; Chandrashekar S; Singh SB; Niranjana SR
    J Basic Microbiol; 2014 Aug; 54(8):792-801. PubMed ID: 23681707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Mining and Evaluation of the Biocontrol Potential of
    Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1.
    Anjaiah V; Cornelis P; Koedam N
    Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp.
    Mukherjee A; Singh BK; Verma JP
    Microbiol Res; 2020 Aug; 237():126469. PubMed ID: 32251977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.
    Saxena A; Raghuwanshi R; Singh HB
    J Basic Microbiol; 2015 Feb; 55(2):195-206. PubMed ID: 25205162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.