These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20049631)

  • 1. Effects of membrane depolarization and changes in extracellular [K(+)] on the Ca (2+) transients of fast skeletal muscle fibers. Implications for muscle fatigue.
    Quiñonez M; González F; Morgado-Valle C; DiFranco M
    J Muscle Res Cell Motil; 2010 Jul; 31(1):13-33. PubMed ID: 20049631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
    Cairns SP; Leader JP; Higgins A; Renaud JM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1151-C1165. PubMed ID: 35385328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderately elevated extracellular [K
    Pedersen KK; Cheng AJ; Westerblad H; Olesen JH; Overgaard K
    Am J Physiol Cell Physiol; 2019 Nov; 317(5):C900-C909. PubMed ID: 31411922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force.
    Leijding C; Viken I; Bruton JD; Andersson DC; Cheng AJ; Westerblad H
    FASEB J; 2023 Jun; 37(6):e22978. PubMed ID: 37191967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C598-611. PubMed ID: 9277357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage sensor current, SR Ca
    Bibollet H; Nguyen EL; Miranda DR; Ward CW; Voss AA; Schneider MF; Hernández-Ochoa EO
    Physiol Rep; 2023 May; 11(9):e15675. PubMed ID: 37147904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle.
    Cairns SP; Ruzhynsky V; Renaud JM
    Am J Physiol Cell Physiol; 2004 Sep; 287(3):C762-70. PubMed ID: 15151907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    J Appl Physiol (1985); 1998 Apr; 84(4):1395-406. PubMed ID: 9516209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres.
    Garcia J; Schneider MF
    J Physiol; 1993 Apr; 463():709-28. PubMed ID: 8246202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle.
    Wang X; Nawaz M; DuPont C; Myers JH; Burke SR; Bannister RA; Foy BD; Voss AA; Rich MM
    Elife; 2022 Jan; 11():. PubMed ID: 34985413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals.
    Valdés JA; Hidalgo J; Galaz JL; Puentes N; Silva M; Jaimovich E; Carrasco MA
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1960-70. PubMed ID: 17215326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium-stimulated respiration and intra-cellular calcium releae in from skeletal muscle.
    Van Der Kloot WG
    J Physiol; 1967 Jul; 191(1):141-65. PubMed ID: 6050611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers.
    Jong DS; Pape PC; Chandler WK
    J Gen Physiol; 1995 Oct; 106(4):659-704. PubMed ID: 8576702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between myoplasmic calcium transients and calcium currents in frog skeletal muscle.
    García J; Amador M; Stefani E
    J Gen Physiol; 1989 Dec; 94(6):973-86. PubMed ID: 2482329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
    Cairns SP; Renaud JM
    J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming.
    Dutka TL; Lamb GD
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2112-21. PubMed ID: 17329405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue. K+ -induced paralysis at 37°C.
    Cairns SP; Leader JP; Loiselle DS
    Pflugers Arch; 2011 Apr; 461(4):469-79. PubMed ID: 21337119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Ca2+ channels, charge movement and Ca2+ transients by heparin in frog skeletal muscle fibres.
    Martínez M; García MC; Farías JM; Cruzblanca H; Sánchez JA
    J Muscle Res Cell Motil; 1996 Oct; 17(5):575-94. PubMed ID: 8906624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.