These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 20049656)
41. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons. Liu T; Fujita T; Nakatsuka T; Kumamoto E J Neurophysiol; 2008 Mar; 99(3):1274-84. PubMed ID: 18216222 [TBL] [Abstract][Full Text] [Related]
42. Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Wei S; Ong WY; Thwin MM; Fong CW; Farooqui AA; Gopalakrishnakone P; Hong W Neuroscience; 2003; 121(4):891-8. PubMed ID: 14580939 [TBL] [Abstract][Full Text] [Related]
43. Neuronal damage by secretory phospholipase A2: modulation by cytosolic phospholipase A2, platelet-activating factor, and cyclooxygenase-2 in neuronal cells in culture. Kolko M; Rodriguez de Turco EB; Diemer NH; Bazan NG Neurosci Lett; 2003 Feb; 338(2):164-8. PubMed ID: 12566178 [TBL] [Abstract][Full Text] [Related]
44. PLA(2) signaling is involved in calpain-mediated degradation of synaptic dihydropyrimidinase-like 3 protein in response to NMDA excitotoxicity. Kowara R; Moraleja KL; Chakravarthy B Neurosci Lett; 2008 Jan; 430(3):197-202. PubMed ID: 18053648 [TBL] [Abstract][Full Text] [Related]
45. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Farooqui AA; Ong WY; Horrocks LA Pharmacol Rev; 2006 Sep; 58(3):591-620. PubMed ID: 16968951 [TBL] [Abstract][Full Text] [Related]
46. Long-Term Lithium Treatment Increases cPLA₂ and iPLA₂ Activity in Cultured Cortical and Hippocampal Neurons. De-Paula Vde J; Kerr DS; de Carvalho MP; Schaeffer EL; Talib LL; Gattaz WF; Forlenza OV Molecules; 2015 Nov; 20(11):19878-85. PubMed ID: 26556322 [TBL] [Abstract][Full Text] [Related]
47. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. Goodenowe DB; Cook LL; Liu J; Lu Y; Jayasinghe DA; Ahiahonu PW; Heath D; Yamazaki Y; Flax J; Krenitsky KF; Sparks DL; Lerner A; Friedland RP; Kudo T; Kamino K; Morihara T; Takeda M; Wood PL J Lipid Res; 2007 Nov; 48(11):2485-98. PubMed ID: 17664527 [TBL] [Abstract][Full Text] [Related]
48. Roles of adenosine receptors in the regulation of kainic acid-induced neurotoxic responses in mice. Lee HK; Choi SS; Han KJ; Han EJ; Suh HW Brain Res Mol Brain Res; 2004 Jun; 125(1-2):76-85. PubMed ID: 15193424 [TBL] [Abstract][Full Text] [Related]
49. The interaction of dialkyl ether lecithins with phospholipase A2 (Naja naja naja). DeBose CD; Roberts MF J Biol Chem; 1983 May; 258(10):6327-34. PubMed ID: 6687887 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. Eriksson C; Zou LP; Ahlenius S; Winblad B; Schultzberg M Brain Res Mol Brain Res; 2000 Dec; 85(1-2):103-13. PubMed ID: 11146112 [TBL] [Abstract][Full Text] [Related]
51. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Perumal Samy R; Gopalakrishnakone P; Bow H; Puspharaj PN; Chow VT Biochimie; 2010 Dec; 92(12):1854-66. PubMed ID: 20723574 [TBL] [Abstract][Full Text] [Related]
52. Involvement of cyclin-dependent kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat hippocampus. Putkonen N; Kukkonen JP; Mudo G; Putula J; Belluardo N; Lindholm D; Korhonen L Eur J Neurosci; 2011 Oct; 34(8):1212-21. PubMed ID: 21978141 [TBL] [Abstract][Full Text] [Related]
53. Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis. Wu K; Leung LS Neuroscience; 2001; 104(2):379-96. PubMed ID: 11377842 [TBL] [Abstract][Full Text] [Related]
54. Purification and characterization of a soluble phospholipase A2 from guinea pig lung. Bennett CF; McCarte A; Crooke ST Biochim Biophys Acta; 1990 Dec; 1047(3):271-83. PubMed ID: 2252913 [TBL] [Abstract][Full Text] [Related]
55. Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. Stella N; Pellerin L; Magistretti PJ J Neurosci; 1995 May; 15(5 Pt 1):3307-17. PubMed ID: 7751911 [TBL] [Abstract][Full Text] [Related]
56. Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates. Hazen SL; Hall CR; Ford DA; Gross RW J Clin Invest; 1993 Jun; 91(6):2513-22. PubMed ID: 8514863 [TBL] [Abstract][Full Text] [Related]
58. Characterization of an ATP-stimulatable Ca(2+)-independent phospholipase A2 from clonal insulin-secreting HIT cells and rat pancreatic islets: a possible molecular component of the beta-cell fuel sensor. Ramanadham S; Wolf MJ; Jett PA; Gross RW; Turk J Biochemistry; 1994 Jun; 33(23):7442-52. PubMed ID: 8003509 [TBL] [Abstract][Full Text] [Related]
59. Kainic acid-induced neurotrophic activities in developing cortical neurons. Lee YH; Fang KM; Yang CM; Hwang HM; Chiu CT; Tsai W J Neurochem; 2000 Jun; 74(6):2401-11. PubMed ID: 10820201 [TBL] [Abstract][Full Text] [Related]
60. Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Schaeffer EL; Forlenza OV; Gattaz WF Psychopharmacology (Berl); 2009 Jan; 202(1-3):37-51. PubMed ID: 18853146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]