These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20049823)

  • 1. Characterization of nanomaterials for toxicity assessment.
    Sayes CM; Warheit DB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(6):660-70. PubMed ID: 20049823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicological aspects for nanomaterial in humans.
    Dusinska M; Magdolenova Z; Fjellsbø LM
    Methods Mol Biol; 2013; 948():1-12. PubMed ID: 23070759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications.
    Johnston H; Brown D; Kermanizadeh A; Gubbins E; Stone V
    J Control Release; 2012 Dec; 164(3):307-13. PubMed ID: 22940205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.
    Lai DY
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):1-15. PubMed ID: 21965171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity testing of nanomaterials.
    Schrand AM; Dai L; Schlager JJ; Hussain SM
    Adv Exp Med Biol; 2012; 745():58-75. PubMed ID: 22437813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs.
    Sohal IS; O'Fallon KS; Gaines P; Demokritou P; Bello D
    Part Fibre Toxicol; 2018 Jul; 15(1):29. PubMed ID: 29970114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays.
    Kroll A; Dierker C; Rommel C; Hahn D; Wohlleben W; Schulze-Isfort C; Göbbert C; Voetz M; Hardinghaus F; Schnekenburger J
    Part Fibre Toxicol; 2011 Feb; 8():9. PubMed ID: 21345205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A weight of evidence approach for hazard screening of engineered nanomaterials.
    Hristozov DR; Zabeo A; Foran C; Isigonis P; Critto A; Marcomini A; Linkov I
    Nanotoxicology; 2014 Feb; 8(1):72-87. PubMed ID: 23153309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation.
    Powers KW; Brown SC; Krishna VB; Wasdo SC; Moudgil BM; Roberts SM
    Toxicol Sci; 2006 Apr; 90(2):296-303. PubMed ID: 16407094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive models for nanotoxicology: current challenges and future opportunities.
    Clark KA; White RH; Silbergeld EK
    Regul Toxicol Pharmacol; 2011 Apr; 59(3):361-3. PubMed ID: 21310205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity assessment of nanomaterials: methods and challenges.
    Dhawan A; Sharma V
    Anal Bioanal Chem; 2010 Sep; 398(2):589-605. PubMed ID: 20652549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a multilevel approach for the evaluation of nanomaterials' toxicity.
    Galluzzi L; Chiarantini L; Pantucci E; Curci R; Merikhi J; Hummel H; Bachmann PK; Manuali E; Pezzotti G; Magnani M
    Nanomedicine (Lond); 2012 Mar; 7(3):393-409. PubMed ID: 22047028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials.
    Card JW; Jonaitis TS; Tafazoli S; Magnuson BA
    Crit Rev Toxicol; 2011 Jan; 41(1):22-49. PubMed ID: 21077788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro assessments of nanomaterial toxicity.
    Jones CF; Grainger DW
    Adv Drug Deliv Rev; 2009 Jun; 61(6):438-56. PubMed ID: 19383522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.