These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20049823)

  • 21. Culture medium-associated physicochemical insights on the cytotoxicity of carbon nanomaterials.
    Kong H; Wang L; Zhu Y; Huang Q; Fan C
    Chem Res Toxicol; 2015 Mar; 28(3):290-5. PubMed ID: 25580995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos.
    Jang GH; Lee KY; Choi J; Kim SH; Lee KH
    Environ Pollut; 2016 Sep; 216():755-763. PubMed ID: 27364464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.
    Yan L; Gu Z; Zhao Y
    Chem Asian J; 2013 Oct; 8(10):2342-53. PubMed ID: 23881693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A functional assay-based strategy for nanomaterial risk forecasting.
    Hendren CO; Lowry GV; Unrine JM; Wiesner MR
    Sci Total Environ; 2015 Dec; 536():1029-1037. PubMed ID: 26188653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput embryonic zebrafish test with automated dechorionation to evaluate nanomaterial toxicity.
    Carbaugh CM; van der Schalie WH; Widder MW
    PLoS One; 2022; 17(9):e0274011. PubMed ID: 36112591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines.
    Warheit DB; Donner EM
    Nanotoxicology; 2010 Dec; 4():409-13. PubMed ID: 20925448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sameness: The regulatory crux with nanomaterial identity and grouping schemes for hazard assessment.
    Walser T; Studer C
    Regul Toxicol Pharmacol; 2015 Aug; 72(3):569-71. PubMed ID: 26049104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of nanomaterials for toxicological studies.
    Powers KW; Carpinone PL; Siebein KN
    Methods Mol Biol; 2012; 926():13-32. PubMed ID: 22975954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use?
    Hoet P; Legiest B; Geys J; Nemery B
    Drug Saf; 2009; 32(8):625-36. PubMed ID: 19591528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxic potential of materials at the nanolevel.
    Nel A; Xia T; Mädler L; Li N
    Science; 2006 Feb; 311(5761):622-7. PubMed ID: 16456071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.
    Boverhof DR; David RM
    Anal Bioanal Chem; 2010 Feb; 396(3):953-61. PubMed ID: 19756533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies.
    Klein CL; Wiench K; Wiemann M; Ma-Hock L; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2012 Jul; 86(7):1137-51. PubMed ID: 22532024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines.
    Hansjosten I; Rapp J; Reiner L; Vatter R; Fritsch-Decker S; Peravali R; Palosaari T; Joossens E; Gerloff K; Macko P; Whelan M; Gilliland D; Ojea-Jimenez I; Monopoli MP; Rocks L; Garry D; Dawson K; Röttgermann PJF; Murschhauser A; Rädler JO; Tang SVY; Gooden P; Belinga-Desaunay MA; Khan AO; Briffa S; Guggenheim E; Papadiamantis A; Lynch I; Valsami-Jones E; Diabaté S; Weiss C
    Arch Toxicol; 2018 Feb; 92(2):633-649. PubMed ID: 29119250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.
    Moreno-Horn M; Gebel T
    Crit Rev Toxicol; 2014 Nov; 44(10):849-75. PubMed ID: 25257841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues.
    Jain A; Ranjan S; Dasgupta N; Ramalingam C
    Crit Rev Food Sci Nutr; 2018 Jan; 58(2):297-317. PubMed ID: 27052385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of physicochemical properties of nanomaterials on their toxicity.
    Li X; Liu W; Sun L; Aifantis KE; Yu B; Fan Y; Feng Q; Cui F; Watari F
    J Biomed Mater Res A; 2015 Jul; 103(7):2499-507. PubMed ID: 25530348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.