These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 20049920)
1. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related]
2. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. Henriques ST; Costa J; Castanho MA FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883 [TBL] [Abstract][Full Text] [Related]
3. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity. Henriques ST; Castanho MA J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239 [TBL] [Abstract][Full Text] [Related]
4. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Sharonov A; Hochstrasser RM Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046 [TBL] [Abstract][Full Text] [Related]
5. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
6. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Muñoz-Morris MA; Heitz F; Divita G; Morris MC Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466 [TBL] [Abstract][Full Text] [Related]
7. The interaction of cell-penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization. Alves ID; Correia I; Jiao CY; Sachon E; Sagan S; Lavielle S; Tollin G; Chassaing G J Pept Sci; 2009 Mar; 15(3):200-9. PubMed ID: 18985709 [TBL] [Abstract][Full Text] [Related]
8. Interactions of amphipathic CPPs with model membranes. Deshayes S; Konate K; Aldrian G; Heitz F; Divita G Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121 [TBL] [Abstract][Full Text] [Related]
9. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
10. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021 [TBL] [Abstract][Full Text] [Related]
11. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
12. Biophysical and biological studies of end-group-modified derivatives of Pep-1. Weller K; Lauber S; Lerch M; Renaud A; Merkle HP; Zerbe O Biochemistry; 2005 Dec; 44(48):15799-811. PubMed ID: 16313183 [TBL] [Abstract][Full Text] [Related]
13. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
14. Interaction of S413-PV cell penetrating peptide with model membranes: relevance to peptide translocation across biological membranes. Mano M; Henriques A; Paiva A; Prieto M; Gavilanes F; Simões S; de Lima MC J Pept Sci; 2007 May; 13(5):301-13. PubMed ID: 17437249 [TBL] [Abstract][Full Text] [Related]
15. Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers. Lein M; deRonde BM; Sgolastra F; Tew GN; Holden MA Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2980-4. PubMed ID: 26342679 [TBL] [Abstract][Full Text] [Related]
16. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Henriques ST; Quintas A; Bagatolli LA; Homblé F; Castanho MA Mol Membr Biol; 2007; 24(4):282-93. PubMed ID: 17520484 [TBL] [Abstract][Full Text] [Related]
17. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Henriques ST; Castanho MA Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626 [TBL] [Abstract][Full Text] [Related]
18. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
19. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics. Deshayes S; Morris MC; Divita G; Heitz F J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287 [TBL] [Abstract][Full Text] [Related]
20. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Zhu WL; Hahm KS; Shin SY J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]