These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 20049920)
41. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Kiyota T; Lee S; Sugihara G Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958 [TBL] [Abstract][Full Text] [Related]
42. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. Pimthon J; Willumeit R; Lendlein A; Hofmann D J Pept Sci; 2009 Oct; 15(10):654-67. PubMed ID: 19691017 [TBL] [Abstract][Full Text] [Related]
43. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
44. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Li W; Nicol F; Szoka FC Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755 [TBL] [Abstract][Full Text] [Related]
45. The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. Herbig ME; Assi F; Textor M; Merkle HP Biochemistry; 2006 Mar; 45(11):3598-609. PubMed ID: 16533042 [TBL] [Abstract][Full Text] [Related]
46. Design and characterization of anchoring amphiphilic peptides and their interactions with lipid vesicles. Percot A; Zhu XX; Lafleur M Biopolymers; 1999 Nov; 50(6):647-55. PubMed ID: 10508967 [TBL] [Abstract][Full Text] [Related]
47. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
48. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Konate K; Crombez L; Deshayes S; Decaffmeyer M; Thomas A; Brasseur R; Aldrian G; Heitz F; Divita G Biochemistry; 2010 Apr; 49(16):3393-402. PubMed ID: 20302329 [TBL] [Abstract][Full Text] [Related]
49. Interactions of amphipathic CPPs with model membranes. Deshayes S; Morris MC; Divita G; Heitz F Biochim Biophys Acta; 2006 Mar; 1758(3):328-35. PubMed ID: 16277976 [TBL] [Abstract][Full Text] [Related]
50. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Wieprecht T; Beyermann M; Seelig J Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132 [TBL] [Abstract][Full Text] [Related]
51. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
52. S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Padari K; Koppel K; Lorents A; Hällbrink M; Mano M; Pedroso de Lima MC; Pooga M Bioconjug Chem; 2010 Apr; 21(4):774-83. PubMed ID: 20205419 [TBL] [Abstract][Full Text] [Related]
53. Amphipathic peptides and drug delivery. Fernández-Carneado J; Kogan MJ; Pujals S; Giralt E Biopolymers; 2004; 76(2):196-203. PubMed ID: 15054899 [TBL] [Abstract][Full Text] [Related]
54. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Papo N; Shai Y Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621 [TBL] [Abstract][Full Text] [Related]
55. Membrane binding of beta2-glycoprotein I can be described by a two-state reaction model: an atomic force microscopy and surface plasmon resonance study. Gamsjaeger R; Johs A; Gries A; Gruber HJ; Romanin C; Prassl R; Hinterdorfer P Biochem J; 2005 Aug; 389(Pt 3):665-73. PubMed ID: 15813706 [TBL] [Abstract][Full Text] [Related]
56. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. Ding B; Chen Z J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835 [TBL] [Abstract][Full Text] [Related]
57. Physicochemical and biological characterization of pep-1/elastin complexes. Ahmad Nasrollahi S; Taghibiglou C; Fouladdel S; Dinarvand R; Moosavi Movahedi AA; Azizi E; Farboud ES Chem Biol Drug Des; 2013 Aug; 82(2):189-95. PubMed ID: 23601371 [TBL] [Abstract][Full Text] [Related]
58. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. Säälik P; Niinep A; Pae J; Hansen M; Lubenets D; Langel Ü; Pooga M J Control Release; 2011 Jul; 153(2):117-25. PubMed ID: 21420454 [TBL] [Abstract][Full Text] [Related]
59. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001 [TBL] [Abstract][Full Text] [Related]
60. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]