These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 20050606)
21. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S; Arndt A; Bugg TD Biochemistry; 2004 Oct; 43(42):13390-6. PubMed ID: 15491145 [TBL] [Abstract][Full Text] [Related]
22. Studies of the heme coordination and ligand binding properties of soluble guanylyl cyclase (sGC): characterization of Fe(II)sGC and Fe(II)sGC(CO) by electronic absorption and magnetic circular dichroism spectroscopies and failure of CO to activate the enzyme. Burstyn JN; Yu AE; Dierks EA; Hawkins BK; Dawson JH Biochemistry; 1995 May; 34(17):5896-903. PubMed ID: 7727447 [TBL] [Abstract][Full Text] [Related]
23. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme. Legler PM; Massiah MA; Mildvan AS Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023 [TBL] [Abstract][Full Text] [Related]
24. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700 [TBL] [Abstract][Full Text] [Related]
25. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects. Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188 [TBL] [Abstract][Full Text] [Related]
26. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Fernandez RL; Juntunen ND; Brunold TC Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511 [TBL] [Abstract][Full Text] [Related]
27. How can a single second sphere amino acid substitution cause reduction midpoint potential changes of hundreds of millivolts? Yikilmaz E; Porta J; Grove LE; Vahedi-Faridi A; Bronshteyn Y; Brunold TC; Borgstahl GE; Miller AF J Am Chem Soc; 2007 Aug; 129(32):9927-40. PubMed ID: 17628062 [TBL] [Abstract][Full Text] [Related]
28. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053 [TBL] [Abstract][Full Text] [Related]
29. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. Groce SL; Lipscomb JD Biochemistry; 2005 May; 44(19):7175-88. PubMed ID: 15882056 [TBL] [Abstract][Full Text] [Related]
30. Extensive studies of the heme coordination structure of indoleamine 2,3-dioxygenase and of tryptophan binding with magnetic and natural circular dichroism and electron paramagnetic resonance spectroscopy. Sono M; Dawson JH Biochim Biophys Acta; 1984 Sep; 789(2):170-87. PubMed ID: 6089893 [TBL] [Abstract][Full Text] [Related]
31. Spectroscopic studies of single and double variants of M ferritin: lack of conversion of a biferrous substrate site into a cofactor site for O2 activation. Kwak Y; Schwartz JK; Haldar S; Behera RK; Tosha T; Theil EC; Solomon EI Biochemistry; 2014 Jan; 53(3):473-82. PubMed ID: 24397299 [TBL] [Abstract][Full Text] [Related]
32. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution. Blaesi EJ; Fox BG; Brunold TC Biochemistry; 2015 May; 54(18):2874-84. PubMed ID: 25897562 [TBL] [Abstract][Full Text] [Related]
33. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases. Neidig ML; Kavana M; Moran GR; Solomon EI J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344 [TBL] [Abstract][Full Text] [Related]
34. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Crawford JA; Li W; Pierce BS Biochemistry; 2011 Nov; 50(47):10241-53. PubMed ID: 21992268 [TBL] [Abstract][Full Text] [Related]
35. Investigation of the role of the N-terminal proline, the distal heme ligand in the CO sensor CooA. Clark RW; Youn H; Parks RB; Cherney MM; Roberts GP; Burstyn JN Biochemistry; 2004 Nov; 43(44):14149-60. PubMed ID: 15518565 [TBL] [Abstract][Full Text] [Related]
36. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D; Nowak T Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816 [TBL] [Abstract][Full Text] [Related]
37. Origin of the proton-transfer step in the cofactor-free (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase: effect of the basicity of an active site His residue. Hernandez-Ortega A; Quesne MG; Bui S; Heuts DP; Steiner RA; Heyes DJ; de Visser SP; Scrutton NS J Biol Chem; 2014 Mar; 289(12):8620-32. PubMed ID: 24482238 [TBL] [Abstract][Full Text] [Related]
38. Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli. Copik AJ; Swierczek SI; Lowther WT; D'souza VM; Matthews BW; Holz RC Biochemistry; 2003 May; 42(20):6283-92. PubMed ID: 12755633 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Fe-proximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase. Voegtle HL; Sono M; Adak S; Pond AE; Tomita T; Perera R; Goodin DB; Ikeda-Saito M; Stuehr DJ; Dawson JH Biochemistry; 2003 Mar; 42(8):2475-84. PubMed ID: 12600215 [TBL] [Abstract][Full Text] [Related]
40. Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 2. Effects on heme coordination and function. Hirst J; Wilcox SK; Ai J; Moënne-Loccoz P; Loehr TM; Goodin DB Biochemistry; 2001 Feb; 40(5):1274-83. PubMed ID: 11170453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]