These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20050614)
1. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) . Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614 [TBL] [Abstract][Full Text] [Related]
2. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). Wang L; Huang H; Nguyen HH; Allen KN; Mariano PS; Dunaway-Mariano D Biochemistry; 2010 Feb; 49(6):1072-81. PubMed ID: 20050615 [TBL] [Abstract][Full Text] [Related]
3. Low-resolution SAXS and structural dynamics analysis on M. tuberculosis GmhB enzyme involved in GDP-heptose biosynthetic pathway. Karan S; Pratap B; Yadav SPS; Ashish ; Saxena AK Int J Biol Macromol; 2019 Sep; 136():676-685. PubMed ID: 31207333 [TBL] [Abstract][Full Text] [Related]
4. Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis. Kinateder T; Drexler L; Straub K; Merkl R; Sterner R Protein Sci; 2023 Jan; 32(1):e4536. PubMed ID: 36502290 [TBL] [Abstract][Full Text] [Related]
5. Structural and kinetic characterization of the LPS biosynthetic enzyme D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) from Escherichia coli. Taylor PL; Sugiman-Marangos S; Zhang K; Valvano MA; Wright GD; Junop MS Biochemistry; 2010 Feb; 49(5):1033-41. PubMed ID: 20050699 [TBL] [Abstract][Full Text] [Related]
6. Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway. Rangarajan ES; Proteau A; Wagner J; Hung MN; Matte A; Cygler M J Biol Chem; 2006 Dec; 281(49):37930-41. PubMed ID: 16966333 [TBL] [Abstract][Full Text] [Related]
7. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. Lu Z; Wang L; Dunaway-Mariano D; Allen KN J Biol Chem; 2009 Jan; 284(2):1224-33. PubMed ID: 18986982 [TBL] [Abstract][Full Text] [Related]
8. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins. Ghodge SV; Fedorov AA; Fedorov EV; Hillerich B; Seidel R; Almo SC; Raushel FM Biochemistry; 2013 Feb; 52(6):1101-12. PubMed ID: 23327428 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose. Kneidinger B; Graninger M; Puchberger M; Kosma P; Messner P J Biol Chem; 2001 Jun; 276(24):20935-44. PubMed ID: 11279237 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. Kneidinger B; Marolda C; Graninger M; Zamyatina A; McArthur F; Kosma P; Valvano MA; Messner P J Bacteriol; 2002 Jan; 184(2):363-9. PubMed ID: 11751812 [TBL] [Abstract][Full Text] [Related]
11. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Tremblay LW; Dunaway-Mariano D; Allen KN Biochemistry; 2006 Jan; 45(4):1183-93. PubMed ID: 16430214 [TBL] [Abstract][Full Text] [Related]
12. Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Yip SH; Matsumura I Mol Biol Evol; 2013 Sep; 30(9):2001-12. PubMed ID: 23728795 [TBL] [Abstract][Full Text] [Related]
13. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase. Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684 [TBL] [Abstract][Full Text] [Related]
14. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131. Lu Z; Dunaway-Mariano D; Allen KN Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis. Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398 [TBL] [Abstract][Full Text] [Related]
16. Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis. Kim MS; Lim A; Yang SW; Park J; Lee D; Shin DH Acta Crystallogr D Biol Crystallogr; 2013 Apr; 69(Pt 4):658-68. PubMed ID: 23519675 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616 [TBL] [Abstract][Full Text] [Related]
18. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis. Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095 [TBL] [Abstract][Full Text] [Related]
19. Chiu SF; Teng KW; Wang PC; Chung HY; Wang CJ; Cheng HC; Kao MC Virulence; 2021 Dec; 12(1):1610-1628. PubMed ID: 34125649 [No Abstract] [Full Text] [Related]
20. Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. Lee DC; Cottrill MA; Forsberg CW; Jia Z J Biol Chem; 2003 Aug; 278(33):31412-8. PubMed ID: 12782623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]